Research efforts have brought the possibility of having magnetic resonance imaging (MRI) on the nanoscale and the ever-elusive quantum computer closer to reality.
Research efforts have brought the possibility of having magnetic resonance imaging (MRI) on the nanoscale and the ever-elusive quantum computer closer to reality. A new study co-authored by a UC Santa Barbara researcher may give both an extra nudge. The findings appear today in Science Express, an online version of the journal Science.
Ania Bleszynski Jayich, an assistant professor of physics who joined the UCSB faculty in 2010, spent a year at Harvard working on an experiment that coupled nitrogen-vacancy centers in diamond to nanomechanical resonators. That project is the basis for the new paper, "Coherent sensing of a mechanical resonator with a single spin qubit."
A nitrogen-vacancy (NV) center is a specific defect in diamond that exhibits a quantum magnetic behavior known as spin. When a single spin in diamond is coupled with a magnetic mechanical resonator –– a device used to generate or select specific frequencies –– it points toward the potential for a new nanoscale sensing technique with implications for biology and technology, Jayich explained.
Source-Eurekalert