According to Aussie researchers, the protein called CPT1, that helps in burning the fats in the muscles efficiently holds the key to treat diabetes.
A protein, called CPT1, which helps muscles to burn fat better, holds the key to treat diabetes, say Aussie scientists.
In a new study, scientists in Sydney and Melbourne have found exactly how fat molecules clog up muscle cells, making them less responsive to insulin.The finding is an important milestone in understanding the mechanisms of obesity related insulin resistance, a precursor of Type 2 diabetes.
Dr Clinton Bruce has found that fat molecules clog up the cytosol, or cell interior, but not the mitochondrion, or energy powerhouse of the cell.
This is an important distinction because the groups have also found a way to reduce the build-up of fat molecules in the cytosol by increasing the ability of mitochondria to take in fat molecules and burn them.
The finding is critical for the understanding of fat metabolism, and according to Kraegen, it indicates a direction for further pre-clinical research.
"There's a lot of work being put into developing new drugs and methodologies for improving insulin action," he said.
Advertisement
For the study, the researchers made one small change to a single muscle in one leg of a rat, allowing that muscle to burn fat molecules better-they overexpressed a protein (CPT1) that acts like a "gate" or "tap" to control entry of fat molecules into mitochondria.
Advertisement
However, the researchers faced one problem that a muscle uses a certain amount of energy depending on the work it is doing. If it gets that energy by burning more fats, it will require less glucose, creating an imbalance of another kind.
"So what we're trying to do is mimic exercise with pharmacological agents," explained Kraegen.
He added: "We're examining agents that make the muscle burn more fuel to get the same amount of energy. In other words, we're trying to make energy conversion less efficient."
"If we succeed in producing this effect, it will make our current finding very potent indeed."
The study will be published in a future issue of the prestigious international journal Diabetes.
Source-ANI
PRI/SK