Australian scientists have shown that nanopatches, smaller than a postage stamp, can convey vaccine as effectively as the conventional needle and syringe, but using 100 times less vaccine.
Australian scientists have shown that nanopatches, smaller than a postage stamp, can convey vaccine as effectively as the conventional needle and syringe, but using 100 times less vaccine.
This discovery has implications for many vaccination programs in both industrialised and developing nations, which must overcome issues with vaccine shortages and distribution.Being both painless and needle-free, the nanopatch offers hope for those with needle phobia, as well as improving the vaccination experience for young children.
"The Nanopatch targeted specific antigen-presenting cells found in a narrow layer just beneath the skin surface and as a result we used less than one hundredth of the dose used by a needle while stimulating a comparable immune response," said Professor Mark Kendall, from Australian Institute for Bioengineering and Nanotechnology at the University of Queensland.
"Our result is ten times better than the best results achieved by other delivery methods and does not require the use of other immune stimulants, called adjuvants, or multiple vaccinations."
"Because the nanopatch requires neither a trained practitioner to administer it nor refrigeration, it has enormous potential cheaply deliver vaccines in developing nations," he said.
Professor Kendall said the nanopatch comprised of several thousands of densely packed projections invisible to the human eye.
Advertisement
"By using far less vaccine we believe that the nanopatch will enable the vaccination of many more people," Professor Kendall said.
Advertisement
"This is an exciting discovery and our next step is to prove the effectiveness of nanopatches in human clinical trials," he said.
Professor Kendall's team includes researchers from UQ's Diamantina Institute for Cancer, Immunology and Metabolic Medicine and Faculty of Health Sciences, as well as the University of Melbourne.
The work was supported by the Australian Research Council, the National Health and Medical Research Council, and the Queensland Government's Smart State Scheme.
style="mso-special-character: line-break">
Source-Medindia
GPL