Nickel-platinum nanoparticles helps to increase the sensitivity of an ELISA, which is used to test for the presence of cancers, HIV and more.

‘Nanoparticles enriched with nickel-rich cores and platinum-rich shells are sensitive in detecting biomarkers of cancer.’

ELISA is a test that measures samples for biochemicals, such as antibodies and proteins, which can indicate the presence of cancer, HIV, pregnancy and more. When a biochemical is detected, the test generates a color output that can be used to quantify its concentration.




The stronger the color is, the stronger the concentration. The tests must be sensitive to prevent false negatives that could delay treatment or interventions.
In the study, the researchers found that when the nanoparticles were used in place of the conventional enzyme used in an ELISA -- peroxidase -- that the test was 300 times more sensitive at detecting carcinoembryonic antigen, a biomarker sometimes used to detect colorectal cancers.
And while a biomarker for colorectal cancer was used in the study, the technique could be used to detect biomarkers for other types of cancers and diseases, says Xiaohu Xia, an assistant professor in UCF's Department of Chemistry and study co-author.
Colorectal cancer is the third leading cause of cancer-related deaths in the U.S., not counting some kinds of skin cancer, and early detection helps improve treatment outcomes, according to the U.S. Centers for Disease Control and Prevention.
Advertisement
Peroxidases found in the horseradish root have been widely used to generate color in diagnostic tests for decades. However, they have limited reaction efficiency and thus color output, which has inhibited the development of sensitive diagnostic tests, Xia says.
Advertisement
"This work sets the record for the catalytic efficiency of peroxidase mimic," Xia says. "It breaks through the limitation of catalytic efficiency of peroxidase mimics, which is a long-standing challenge in the field."
"Such a breakthrough enables highly sensitive detection of cancer biomarkers with the ultimate goal of saving lives through earlier detection of cancers," he says.
Xia says next steps for the research are to continue to refine the technology and apply it to clinical samples of human patients to study its performance.
"We hope the technology can be eventually used in clinical diagnostic laboratories in the near future," Xia says.
Source-Eurekalert