Medindia LOGIN REGISTER
Medindia

Neuron Loss in ALS Linked to Loss of Key Protein

by Kathy Jones on Mar 7 2011 8:56 PM

The profound and pervasive role of a key protein in Amyotrophic lateral sclerosis pathology called TDP-43 has been described by scientists.

 Neuron Loss in ALS Linked to Loss of Key Protein
The profound and pervasive role of a key protein in Amyotrophic lateral sclerosis pathology called TDP-43 has been described by scientists.
Amyotrophic lateral sclerosis, known as ALS or more popularly, Lou Gehrig's disease, is a notorious neurodegenerative condition characterized by the progressive deterioration of brain and spinal cord neurons, resulting in the gradual but catastrophic loss of muscle control and ultimately, death.

A team of scientists at the University of California, San Diego School of Medicine and colleagues carried out the study.

In normal cells, TDP-43 is found in the nucleus where it helps maintain proper levels of ribonucleic acid (RNA), intermediate molecules that translate genetic information from DNA to proteins - the building blocks of cells.

In the majority of ALS patients, however, TDP-43 accumulates in the cell's cytoplasm - the liquid that separates the nucleus from the outer embrane, and thus is excluded from the nucleus, which prevents it from performing its normal duties.

Using a mouse model, the researchers made three new important findings:

First, employing a comprehensive genome-wide RNA-binding mapping strategy, they discovered that more than one-third of the genes in the mouse brain are direct targets of TDP-43. In other words, the roles and functions of these genes are impacted by the presence - or absence - of normal TDP-43.

Advertisement
Second, the genes most affected had numerous TDP-43 binding sites on very long introns. Introns are the non-coding portions of a gene that are not used to make proteins. Typically, introns are removed (spliced out) during the development of mature messenger RNA. Introns, however, contain binding sites for RNA binding proteins such as TDP-43, to regulate the splicing process.

"This is an important finding as genes expressed in the central nervous system have much longer introns than genes expressed in any other tissues," said Gene Yeo, assistant professor in the Department of Cellular and Molecular Medicine.

Advertisement
"This may explain the neuronal selectivity of the disease, and why other types of cells aren't affected."

Third, TDP-43 affects the alternative splicing of many genes. In fact, it affects the alternative splicing of its own RNA message.

Said Yeo: "This autoregulation keeps TDP-43 protein levels in check. The loss of TDP-43 removes this check; more TDP-43 is generated and more is likely to accumulate in the cytoplasm."

The deep and expansive impact of misaggregated TDP-43 and the concurrent loss of normal TDP-43 appear to extend beyond ALS. The protein is a central component in the pathogenesis of an ever-increasing list of neurodegenerative conditions. For example, accumulating abnormal TDP-43 in neuronal cytoplasm has been documented in frontotemporal lobar dementia, a neurological disorder that results in progressive changes in personality, the ability to concentrate, social skills, motivation and reasoning.

"It is likely that TDP-43 affects many other neurodegenerative diseases," said Yeo.

The study has been published in the advance online edition of the journal Nature Neuroscience.

Source-ANI


Advertisement