Important aspects of the aging of human cells are found to be reversed by novel compounds.
Important aspects of the aging of human cells are found to be reversed by novel compounds developed at the University of Exeter, study shows. In a laboratory study of endothelial cells - which line the inside of blood vessels - researchers tested compounds designed to target mitochondria (the "power stations" of cells).
In the samples used in the study, the number of senescent cells (older cells that have deteriorated and stopped dividing) was reduced by up to 50%. The Exeter team also identified two splicing factors (a component of cells) that play a key role in when and how endothelial cells become senescent.
The findings raise the possibility of future treatments not only for blood vessels - which become stiffer as they age, raising the risk of problems including heart attacks and strokes - but also for other cells.
"As human bodies age, they accumulate old (senescent) cells that do not function as well as younger cells," said Professor Lorna Harries, of the University of Exeter Medical School.
"This is not just an effect of aging - it's a reason why we age.
"The compounds developed at Exeter have the potential to tweak the mechanisms by which this aging of cells happens. "We used to think age-related diseases like cancer, dementia and diabetes each had a unique cause, but they actually track back to one or two common mechanisms.
Advertisement
Professor Harries said the goal was to help people stay healthier for longer. She added: "This is about health span and quality of life, rather than merely extending lifespan." In a paper published last year, the team demonstrated a new way to rejuvenate old cells in the laboratory. However, the new research looked at precisely targeting and rejuvenating mitochondria in old cells.
Advertisement
The researchers tested three different compounds, all developed at the University of Exeter, and found each produced a 40-50% drop in the number of senescent blood vessel cells. The compounds in question - AP39, AP123 and RT01 - have been designed by the Exeter team to selectively deliver minute quantities of the gas hydrogen sulfide to the mitochondria in cells and help the old or damaged cells to generate the 'energy' needed for survival and to reduce senescence. "Our compounds provide mitochondria in cells with an alternative fuel to help them function properly," said Professor Matt Whiteman, also from the University of Exeter.
"Many disease states can essentially be viewed as accelerated aging, and keeping mitochondria healthy helps either prevent or, in many cases using animal models, reverse this. "Our current study shows that splicing factors play a key role in determining how our compounds work."
The research was funded by Dunhill Medical Trust and the Medical Research Council.
The paper, published in the journal Aging, is entitled: "Mitochondria-targeted hydrogen sulfide attenuates endothelial senescence by selective induction of splicing factors HNRNPD and SRSF2."
Source-Eurekalert