A protein enables sections of so-called junk DNA to be cut and pasted within genetic code, a finding which could speed up the development of gene therapies, has been discovered by researchers.
A protein enables sections of so-called junk DNA to be cut and pasted within genetic code, a finding which could speed up the development of gene therapies, has been discovered by researchers.
The study at the University of Edinburgh sheds light on the process, known as DNA transposition, in which shifted genes have a significant effect on the behavior of neighboring genes.In the human genome, rearrangement of antibody genes can enable the immune system to target infection more effectively.
The researchers found how the enzyme is able to cut out a section of DNA and reinsert it elsewhere in the genome.
The cut-and-paste property of shifted DNA is now being used to develop tools for scientific research and medical applications.
Learning more about transposition could help scientists understand how to control the process and speed the development of gene therapies - which introduce into cells genes with beneficial properties that, for example, can fight hereditary diseases or cancer.
It was earlier believed that junk DNA, which accounts for almost half of the human genome, was useless.
Advertisement
"By forming a picture of the enzyme that causes DNA to shift, and discovering how this works, we understand more about how these proteins could be adapted and controlled.
Advertisement
The study has been published in the journal Cell.
Source-ANI
ARU