A drug’s efficacy on a tumor can be checked physically by a new imaging technique. This technique is capable of detecting if the inner core of the tumor is getting affected by the anti-cancer drug or not.
A new imaging technique can tell us what goes on inside the tumor internally once an anticancer drug is given. A drug’s effectiveness on the physical aspect of the tumor can get tested here. The results of this study are published in the journal of //Physical Review Letters. A team of physicists at the Institut Lumière Matière (CNRS/Université Claude Bernard Lyon 1), in collaboration with the Cancer Research Center of Lyon (CNRS/INSERM/ Université Claude Bernard Lyon 1//Centre Léon Bérard/Hospices civils de Lyon), has demonstrated the potential, for oncology, of an imaging technique based only on the physical properties of tumors.
It can differentiate populations of malignant cells and monitor how effective an anticancer treatment is. These results, published in Physical Review Letters on January 8, 2019, should help in the design of new therapeutic molecules and in the personalization of treatments.
Despite a good understanding of the biology of cancer, 90% of experimental drugs fail during clinical trials. It is also increasingly suspected that the mechanical properties of tumors influence disease progression, and treatment efficacy.
Although we can evaluate tumor elasticity globally, it is more difficult to measure local rigidity deep down and to see whether the core of the tumor resists the penetration of therapeutic liquids.
To probe these physical properties, the researchers have used a non-contact imaging technique that does not require the use of contrast agents - therefore that does not disturb tissue function - that exploits infinitesimal natural vibrations of matter.
To recapitulate the behavior of colorectal tumors in vitro, the researchers created organoids, spheres with diameter 0.3 mm formed by the aggregation of tumor cells. They focused a red laser beam onto these objects. The infinitesimal vibrations of the sample, generated by thermal agitation, modify very slightly the color of the light beam that exits the sample. By analyzing this light, a map of the mechanical properties of the model tumors is created: the more rigid the area scanned by the laser, the faster the vibrations and, in a manner comparable to the Doppler effect (the mechanism that makes a siren sound increasingly shrill as it gets closer), the greater the color change.
Advertisement
Local variations in mechanical properties after a drug treatment have also been monitored using this technique: the center of the tumor remains rigid longer than the edge, demonstrating the treatment's efficacy gradient. So the local measurement of mechanical properties could confirm the total destruction of the tumor and help in choosing as low a treatment dose and duration as possible.
Advertisement
Source-Eurekalert