A new protein shield discovered by a new study helps repair damaged DNA that causes drug resistance in breast cancer.
A new protein shield has been uncovered that aids in repairing damaged DNA in cells and affects resistance to drugs used for breast cancer treatment. The study conducted by a research team from the Novo Nordisk Foundation Center for Protein Research is published in the internationally acclaimed scientific journal Cell. Breast Cancer is one the most frequently occurring cancer in women worldwide, and hundreds of thousands of new cases are diagnosed with the disease every year. Around 5-10 percent of breast cancer is hereditary, meaning that a woman inherits faulty breast cancer-causing genes from her parents. For example, mutations in BRCA1 gene are found in many cases of hereditary breast cancer. These women are what we call BRCA positive. Basically, the BRCA proteins are involved in fixing broken DNA in a cell, and because BRCA mutant cells cannot accurately repair their DNA, it leads to the development of cancer. In fact, faulty DNA repair is the fundamental cause of most cancers.
‘Using advanced technology, previously unknown proteins that are involved in repairing damages to the DNA were uncovered.’
The risk of developing aggressive forms of cancer in BRCA positive women is so high that some women even choose to have both breasts removed (mastectomy) as a preventative treatment. The most well-known case was when the actress Angelina Jolie chose to have both her breasts removed due to a BRCA-positive diagnosis. In Denmark, we conduct national screenings and offer genetic tests to discover the risk early and provide preventative treatment.
Researchers Discover New DNA Repairers
A research team, led by Chuna Choudhary and Jiri Lukas, at the Novo Nordisk Foundation Center for Protein Research at the Faculty of Health and Medical Sciences at the University of Copenhagen, used advanced technology (mass spectrometry) to uncover previously unknown proteins that are involved in repairing damages to the DNA. To do this, they genetically engineered human cells to "tag" key proteins that were already known to repair DNA and looked at other proteins that interact with them.
"This is very similar to using social media, such as Facebook, for finding out interactions of a person. By analyzing social network profile of a person we can find links to the individuals he/she interacts with, but who are unknown to us". says Rajat Gupta, who is the first author of the study. This sophisticated analysis of "networks of DNA repair" allowed the researchers to get a detailed map of DNA repairing proteins and to discover new ones.
Advertisement
Breakthrough advances in the past years have led to highly promising drugs, called PARP inhibitors, that effectively cures BRCA positive cancers. Unfortunately, not all patients respond to the drug and many of those who do respond initially develop resistance to these drugs after a period of treatment. Researchers are therefore actively trying to understand the mechanisms that cause the resistance and to find new targets that can be used to treat these resistant cancers.
Advertisement
The next step will be to further understand details of protein networks, how exactly shieldin protects DNA, and how it impacts cancer resistance to PARP inhibitor. Researchers will also be interested to understand whether shieldin could be used as a new cancer drug target.
Source-Eurekalert