Scientists have patented a NEW method for preparing anti-leukemia compounds which have only been available from an Asian tree till now.
Chemical synthesis of alkaloids with anti cancer properties like cephalotaxine and homoharringtonine(HHT) helped to unveil new method of producing structurally related, less-expensive, easily available leukemia drugs whose production is not associated with the risks and inefficiencies of harvesting natural sources, according to chemistry researchers at Oregon State University. The only source of getting cephalotoxine and HHT till now was asian trees. But now, chemical synthesis was identified to give better yield.
‘Synthesis of cephalotaxine and HHT aided to prepare related compounds which could act as potential new drugs for treating cancer.’
Read More..
"We want to partner with industry so we don't have to grow trees to
get this anymore," said corresponding author Christopher Beaudry,
associate professor of chemistry in OSU's College of Science. "And maybe
we can come up with a more potent protein translation inhibitor, or a
more selective inhibitor. There's also a chance this molecule can find
application in blocking bacterial protein synthesis, which would be
useful for treating antibiotic-resistant pathogens." Read More..
Findings were published in Angewandte Chemie.
HHT, also known as Synribo or omacetaxine mepesuccinate, is used to treat chronic myeloid leukemia, one of four main types of the disease.
Historically, HHT has been made by adding an ester to cephalotaxine, an alkaloid derived from the leaves of an Asian tree: the plum yew. And the only way to get more cephalotaxine was to plant more plum yews.
That's problematic, Beaudry said.
Advertisement
Leukemia is a type of cancer that originates in the blood-forming cells of the bone marrow. Nearly 200,000 people in the U.S. are diagnosed with leukemia each year.
Advertisement
Chronic myeloid leukemia develops slowly, and most patients can live with it for several years, but it's harder to cure than the acute form of the disease. It's characterized by a chromosome abnormality that results in a protein overproduction, leading to the proliferation of the cancer cells.
Chronic myeloid leukemia is treated with drugs, such as Gleevec, that bind to a cancer-causing protein and inactivate it - until the cancer mutates and the drug doesn't work anymore, which is where HHT comes in. HHT shuts off production of all proteins that the fast-growing leukemia cells require.
In addition, HHT holds promise for thwarting chronic myeloid leukemia stem cells, as well as for combating other cancer cell lines.
Beaudry and graduate student Xuan Ju used an oxidative ring-opening of a furan, a type of organic compound, to trigger the HHT synthesis via a reaction known as a spontaneous transannular Mannich cyclization.
"From start to finish - all nine steps from the chemical we buy - the yield is greater than 5 percent, which sounds terrible but is actually quite good," Beaudry said. "Typically the yield for any process would be much lower - think about how much tree mass is required to make HHT - and we think we can make further improvements as well."
Source-Eurekalert