New technique could help reduce antibiotic prescribing by predicting which drugs could be effective in fighting bacteria within minutes.
Miniaturised devices allow users to see whether a bacterium is likely to respond to antibiotics. The research by the scientists at the University of Exeter is in early stages of development. This work could one day be used in clinics to reduce the number of different antibiotics prescribed to patients. The technique works by examining whether fluorescent qualities of the antibiotics are taken up by bacteria. If so, the bacteria glow brighter under the microscope, revealing that the antibiotic has infiltrated the membrane and could be effective.
‘New technique could reduce the use of multiple antibiotics to try and fight a bacterial infection.’
Read More..
The research, published in the journal Lab on a Chip, could contribute to efforts to reduce prescribing, and also enable the development of more effective antibiotics, to help fight the global threat of antibiotic resistance.Read More..
Antibiotic resistance is recognised as a major global threat. As these drugs increasingly fail to work, around 10 million people are predicted to die annually of infections by 2050.
The new technique uses a special microscope and a miniaturised device into which a sample of the bacteria is injected, along with the antibiotic. To date, the team has used the antibiotic ofloxacin, which glows fluorescent under ultraviolet light.
Bacteria also glow when the antibiotic is taken up. However, if they remain dark, the antibiotic has no chance of working and killing the bacteria.
Dr Stefano Pagliara, a biophysicist in the Living Systems Institute, leading this research at the University of Exeter, said: "We're really excited about the potential for this technique to make a meaningful reduction in prescribing, helping to fight the global threat of antibiotic resistance.
Advertisement
Dr Jehangir Cama, an industry research fellow at the Living Systems Institute, who performed the experimental work of this research, said: "Our next step is to further develop this exciting new method by combining it with more advanced microscopy techniques, to see where exactly the antibiotics go when they enter the bacteria."
Advertisement
Further research in this area has been funded by QUEX, a partnership between the University of Exeter and The University of Queensland in Australia. The Queensland team, led by Dr Mark Blaskovich, Director of the Centre for Superbug Solutions at the Institute for Molecular Bioscience, is developing fluorescent versions of other antibiotics so they can be tested in a similar manner.
Blaskovich adds "I am enthused about the opportunities to improve our fundamental understanding of the interactions between antibiotics and bacteria and how this leads to antimicrobial resistance, by combining our novel antibiotic-derived probes with the cutting edge single cell analysis capabilities of the Exeter group".
Source-Eurekalert