New research suggests that there are other levels in the brain play a greater role than previously thought, also a larger proportion of the brain's different structures are involved during touch.

According to his colleague Fredrik Bengtsson, who also participated in the research, this is the first study to show how complex tactile sensations from the skin are coded at the cellular level in the brain.
"Our findings have given us a new key to understanding how the perception of touch in the skin is processed and communicated to the brain", he said.
The Lund researchers have worked in collaboration with researchers in Paris to study how individual nerve cells receive information from the skin. They used a 'haptic interface'*, which created controlled sensations of rolling and slipping movements and of contact initiating and ceasing. Movements proved decisive for the perception of touch – something that was not previously technically possible to study.
The findings of the Swedish-French research group have been published in the distinguished journal Neuron. The work is based on animal experiments and is first and foremost basic research, which aims to increase knowledge of the function of the brain. However, there are also possible areas of application.
"Normal hand and arm prostheses do not give any feedback and therefore no sensation of being a 'real' hand or arm. However, there are new, advanced prostheses with sensors that can supply information to the amputated arm. Our research could contribute to the further development of such sensors", said Henrik Jörntell.
Advertisement
"If we know how a healthy brain operates, we can compare it with the situation in different diseases. Then perhaps we can help patients' brains to function more normally", said Henrik Jörntell.