A new method to use chemical compounds to target and inhibit the growth of specific gut microbes associated with diseases without harming other beneficial organisms has been developed by scientists.
A team of scientists report that they have potentially found a way to use chemical compounds to target and inhibit the growth of specific gut microbes associated with diseases without causing harm to other beneficial organisms. The study appears in ACS Chemical Biology, Emerging evidence suggests that microbes in the digestive system have a big influence on human health and may play a role in the onset of disease throughout the body.
‘A new method using chemical compounds to target and inhibit the growth of specific gut microbes associated with diseases can now prevent harming other beneficial organisms in the gut.’
The digestive system is crammed with trillions of bacteria, fungi, and other microbes that help process food. Recent studies suggest that the changes in these gut flora, or microbiome, may play a role in the onset of a host of diseases and conditions including obesity, diabetes, cancer, allergies, asthma, autism and multiple sclerosis. Antibiotics can help regulate the microbiome, but bacterial resistance is on the rise. In addition, antibiotics can wipe out some of the organisms that contribute to a healthy microbiome, and the microbes that take their place can sometimes cause more harm than good.
Researchers have also investigated using probiotics and fecal transplants to resolve some of these problems. But to date, few have really looked at using non-microbicidal small molecules to alter the microbiome in a targeted way to improve health.
To help fill this gap, Daniel Whitehead, Kristi Whitehead and colleagues sought to use a chemical compound to precisely target and disrupt the metabolic processes of members of the Bacteroides genus, a group of bacteria commonly found in the gut that appear to be associated with the onset of type I diabetes in genetically susceptible individuals.
In laboratory studies, the researchers found that small concentrations of acarbose, a drug used to treat diabetes, significantly disrupted the activity of a group of proteins involved in the Starch Utilization System (Sus). The model bacteria called Bacteroides thetaiotaomicron (Bt) , as well as other Bacteroides members, have this system.
Advertisement
Source-Eurekalert