Gastric wounds can be treated using a new microrobot using in situ and in vivo bioprinting technology, according to a new study.
Gastric wounds can be treated by using a microrobot in a concept 'in situ in vivo bioprinting'. It can carry out tissue repair inside the body. Their study, published in the IOP Publishing journal Biofabrication, establishes proof-of-concept for this new method in the field of bioprinting.
‘Gastric wall wounds can be treated using a novel microrobot which uses in situ and in vivo bioprinting technology.’
Read More..
Co- author Professor Tao Xu, from Tsinghua University, Beijing, said: "Gastric wall injury is a common problem in the digestive tract, and about 12 per cent of the world's population suffer from it to varying degrees. Bioprinting - delivering new cells directly to the wound site to repair the tissue - offers a potentially very useful way to treat the problem."Read More..
"The difficulty is that current bioprinting technology focuses on external sites. Bioprinters are normally quite large, and cannot be applied to inner tissue repair without invasive surgery to give enough room for the printing operation. To overcome this, we developed a microrobot that enters the body via an endoscope to carry out tissue repair inside the body."
The bioprinting platform Professor Xu and the co-author, Professor Xu's PhD student Wenxiang Zhao developed is a Delta robot composed of a fixed base, moving platform and three identical kinematic chains. To be as minimally-invasive as possible, it can fold itself down when entering the patients' body, then unfold before beginning the bioprinting operation.
Mr. Zhao, also from Tsinghua University, said: "We tested the system in two ways. First, with a biological model of a human stomach and an endoscope, to mimic the insertion and printing operation elements of the process. Second, we carried out a bioprinting test in a cell culture dish to test how effective the device was at bioprinting viable cells and repairing wounds."
"Both tests showed promising results. A 10-day cell culture showed that printed cells remained at a high viability and a steady proliferation, which indicated good biological function of the cells in printed tissue scaffolds."
Advertisement
Advertisement