University of Georgia researchers have developed a technique to diagnose a common type of pneumonia within minutes.
University of Georgia researchers have developed a technique to diagnose a common type of pneumonia within minutes. The researchers detected Mycoplasma pneumoniae, which causes atypical or "walking pneumonia," in true clinical samples with over 97 percent accuracy using a recently developed nanotechnology-based platform.
"If you can make a positive identification from a 10-minute test, then appropriate antibiotics can be prescribed, limiting both the consequences in that patient and the likelihood that it will spread to others," said lead-author Duncan Krause, a professor in the department of microbiology in the UGA Franklin College of Arts and Sciences.
Krause and his colleagues built upon an existing technology called surface-enhanced Raman spectroscopy, which works by detecting spectral signatures of a near-infrared laser as it scatters off a biological specimen. They were able to enhance the Raman signal by using silver nanorod arrays to detect the tiny bacteria in throat swab specimens.
Krause, who also directs the interdisciplinary UGA Faculty of Infectious Diseases, compared the nanorod array developed by collaborator Yiping Zhao, director of the UGA Nanoscale Science and Engineering Center, to a brush with densely packed bristles, where each of the tiny silver rods extends out at a specific angle. The sample, such as bacteria from a throat swab, penetrates among the bristles, where the spectral signature produced by the laser is amplified and then analyzed by a computer program.
Krause noted that infections due to M. pneumoniae are very common yet difficult to diagnose. The bacterium is a major cause of respiratory disease in humans and the leading cause of pneumonia in older children and young adults.
"Walking pneumonia feels like a bad chest cold that will not go away," he explained.
Advertisement
The findings have been published in the journal PLoS ONE.
Advertisement