Scientists in the U.S. have found a molecular mechanism that the human immunodeficiency virus (HIV) employs to give out random fluctuations called 'noise'.
Scientists in the U.S. have found a molecular mechanism that the human immunodeficiency virus (HIV) employs to give out random fluctuations called 'noise'.
The research has identified the likely source of HIV gene-expression noise and offers intriguing insight into the role of this noise in driving HIV's fate decision between active replication and latency.After infecting a human cell, HIV integrates into the genome and typically begins to actively replicate. However, the virus can also enter a long-lived latent state, which remains the greatest barrier to eradicating virus from the patient.
Senior study author, Dr. Leor S. Weinberger, a molecular virologist and systems biologist from the Department of Chemistry and Biochemistry at the University of California, San Diego, recently showed that noise in HIV gene-expression critically influences the viral decision to enter either active replication or latency. However, the source of the noise was not clear.
To probe the source of this inherent noise in HIV gene expression, Dr. Weinberger and colleagues exploited a technique from electrical engineering that analyzes how noise changes across different levels of expression.
The researchers examined cells carrying a single integrated copy of HIV engineered to produce a quantifiable protein, and measured HIV-1 expression noise at dozens of different viral integration sites which act as distinct genetic environments for viral gene expression.
The researchers found that HIV noise levels are substantially higher than measured in other organisms, and that HIV gene expression occurs in randomly timed bursts.
Advertisement
The bursting model argues that during active expression HIV cycles between periods of silence and bursting and provides insight into how HIV may be activated by host signaling molecules.
Advertisement
"This finding that transcriptional bursting generates an exceptionally noisy HIV promoter, noisier than almost all other measured promoters, supports the theory that latency may be fundamental to the HIV life cycle and that HIV evolved for probabilistic entry into latency," Dr. Weinberger added.
The study has been published in the April 20th issue of the Biophysical Journal.
Source-ANI
SAV