In moderate pain, men's DPMS response increased with age, while women's DPMS response declined as they aged.
The brain system that allows us to regulate our own pain undergoes age-related changes, and gender-based variations in these changes may result in older females being more susceptible to moderate pain than males. (1✔ ✔Trusted Source
Gender Differences in Pain Threshold, Unpleasantness, and Descending Pain Modulatory Activation Across the Adult Life Span: A Cross Sectional Study
Go to source) Researchers used fMRI scans to examine brain responses in men and women who had rated the intensity and unpleasantness of pain during exposure to increasing levels of heat. The results suggested that established gender differences in pain perception could likely be traced at least in part to this brain network, and offered new evidence that those gender differences may become more disparate with age.
Exploring Brain Responses to Pain
“The most novel part of this study is looking at gender by age,” said lead study author Michelle Failla, assistant professor in the College of Nursing at The Ohio State University. “Most of the work characterizing which regions in the brain respond to pain have been done in people aged 18 to 40. We want to understand what’s happening between the ages of 30 and 90 years old because that’s when people are beginning to experience chronic pain.”‘For moderate pain, men exhibited an enhanced response in the descending pain modulatory system (DPMS) with advancing age, whereas in women, the DPMS response decreased as they aged. #pain #painsensitive’
The study was published recently in The Journal of Pain. Plenty of previous research has shown that females are more sensitive to pain than males, but the brain regions and functions behind the gender differences in pain perception have mostly remained a mystery. And in later adulthood, when risk for chronic pain is higher and our tolerance for pain drops, even less about the brain’s role in pain perception is known.
In this study, the researchers specified that they holistically examined gender-based differences that may relate not just to biological sex, but also to social factors that influence how people respond to pain.
The imaging component of the study zeroed in on the descending pain modulatory system (DPMS), a hub of brain regions that communicate with each other to engage signal transmission – including activation of opioid receptors – that enables us to reduce our own pain.
The study sample included 27 females and 32 males between ages 30 and 86 who were asked to report when applied heat reached levels of just-noticeable, weak and moderate pain and to rate how unpleasant each level felt. Researchers used the fMRI imaging to observe DPMS activity that corresponded with each participant’s individual pain response.
Advertisement
Results showed that a few regions within the brain’s pain modulatory system did indicate a gender-by-age difference: A decreased response in the brain is presumed to translate into a lower ability to harness our own physiological functions to reduce our pain.
Advertisement
“We don’t know exactly what is an optimum DPMS response,” Failla said. “Are we seeing it activated to catch up with your pain, or is it already working, meaning the pain could have been worse?”
The researchers are continuing this work, which includes investigating brain activity in people who may have a difficult time articulating the pain that they’re feeling – such as people with dementia or autism.
The more scientists can learn about the brain’s role in pain perception, the better the chances are for more effective pain management, Failla said.
“Pain is such an individual experience. In science we’re moving toward individual factors that can influence pain specifically and what makes it different for each person,” she said. “This could then identify a mechanism we can target, or even just give us a better understanding that there are different levels of innate abilities to modulate pain.”
Reference:
- Gender Differences in Pain Threshold, Unpleasantness, and Descending Pain Modulatory Activation Across the Adult Life Span: A Cross Sectional Study - (https://linkinghub.elsevier.com/retrieve/pii/S1526590023006077)