For the first time, Ohio State University researchers have taken an atomic-level look at the protein that causes hereditary cerebral amyloid angiopathy (CAA) - a disease thought to
Ohio State University researchers have broken down a protein that causes hereditary cerebral amyloid angiopathy (CAA) to its basic atomic structure. CAA is thought to be linked to dementia and stroke.
The study pinpointed a tiny portion of the protein molecule that is key to the formation of plaques in blood vessels in the brain.Scientists around the globe are working to understand how certain kinds of proteins, called prions, cause degenerative brain diseases such as CAA.
More common prion diseases include bovine spongiform encephalopathy (mad cow disease), and Creutzfeldt-Jakob disease in humans. All are incurable and fatal.
Jaroniec understands that any discovery related to prions could raise people's hopes for a cure, but he emphasized that his study is only a first step towards understanding the structure of the prion for CAA.
"This is a very basic study of the structure of the protein, and hopefully it will give other researchers the information they need to perform further studies, and improve our understanding of CAA," he said.
His team partnered with biochemists from Case Western Reserve University, who took a fragment of the human prion protein for CAA and tagged it with chemical markers.
Advertisement
After the researchers tagged the molecule, they created the right chemical conditions for it to fold into macromolecules called amyloid fibrils.
Advertisement
"These fibrils are very large and complex, and so traditional biochemical techniques won't reveal their structure in detail," Jaroniec said.
The assistant professor of chemistry at Ohio State is an expert in a technique that can reveal the structure of such large molecules: solid-state nuclear magnetic resonance (NMR) spectroscopy. NMR works by tuning into the radio waves emitted by atoms within materials. Every atom emits radio waves at a particular frequency, depending on the types of atoms that surround it.
The NMR technique the chemists used, called "magic angle spinning," involves spinning materials at a certain angle with respect to the NMR's magnetic field in order to remove radio interference among the atoms. It offers researchers a clear view of which atoms make up a particular molecule, and how those atoms are arranged.
So after the researchers let the prion proteins fold into amyloid fibrils, they used magic angle spinning NMR to study the fibrils' structure. They searched the NMR signals for the chemical tags that had been planted in the prions. In that way, they were able to determine what parts of the original prion protein were contained within the fibrils.
They found, to their surprise, that some 80 percent of the original prion protein molecule was not present in the fibrils. The fibrils consisted exclusively of the remaining 20 percent -- approximately 29 amino acids, of which two appear to be especially critical to the structure of the molecule.
The study is published in the online edition of the Proceedings of the National Academy of Sciences.
Source-ANI
RAS/L