Scientists described the molecular mechanism of a new and rare skeletal disease in which small small RNA molecules play a role that has never before been observed in a congenital human disease.
A new and rare skeletal disease was discovered by Karolinska Institutet researchers. In a study published in the journal Nature Medicine they describe the molecular mechanism of the disease, in which small RNA molecules play a role that //has never before been observed in a congenital human disease. The results are important for affected patients but can also help scientists to understand other rare diagnoses.
‘The newly identified skeletal disease was first observed in a parent and a child from a Swedish family.’
"They came to my clinic," says the study's lead author Giedre Grigelioniene, physician and associate professor at the Department of Molecular Medicine and Surgery, Karolinska Institutet. "They'd received a different diagnosis previously, but it didn't fit with what we were seeing in the X-rays. I was convinced that we were looking at a new diagnosis that had not been described before." A long, arduous process then began to examine the finding further. The results of these efforts are now published in a study in Nature Medicine, in which Giedre Grigelioniene and her colleagues describe the new skeletal disease - a type of skeletal dysplasia - and its mechanism.
Together with Fulya Taylan, assistant professor at the same department at Karolinska Institutet, the disease causing mutation in a gene called MIR140 was identified. The gene does not give rise to a protein but to a so-called micro-RNA (miR-140), a small RNA molecule that regulates other genes.
Working alongside with Tatsuya Kobayashi, associate professor at Massachusetts General Hospital, Harvard Medical School in Boston, USA, the researchers produced a mouse model of the disease, using the CRISPR-Cas9 "molecular scissors" technique to create a strain carrying the identified mutation. They subsequently observed that the animals' skeletons displayed the same aberrations as the three patients in the study.
Advertisement
"This causes a change in skeletal growth, deformed joints and the delayed maturation of cartilage cells in the patients, who have short stature, small hands and feet and joint pain," says Dr Grigelioniene.
Advertisement
According to Dr Grigelioniene, the results now published are important both for patients with the disease and for scientists interested in how small regulatory RNA molecules are involved in the development of human congenital disease.
"We plan to examine whether similar mechanisms with mutations in small RNA genes are involved in the development of other rare congenital disorders," she says. "As for patients who already have this disease, the results mean that they can choose to use prenatal fetal diagnostic, in order not to pass the disease on to their children".
Source-Eurekalert