The pandemic cluster named SS14-Ω originated from a strain ancestor in the mid-20th century - after the discovery of antibiotics.
Syphillis, a sexually transmitted infection, affects more than 10 million cases annually. It has plagued humankind for over 500 years. After the first reported outbreaks struck Europe in 1495, the disease spread rapidly to other continents and swelled to a global pandemic. When treatment with the antibiotic penicillin became available in the mid-twentieth century, infection rates started to decrease dramatically.
‘The current syphilis infections are predominantly due to antibiotic-resistant strains from a pandemic cluster.’
Strikingly, however,
infection with the bacteria Treponema pallidum subsp. pallidum
(TPA) has been re-emerging globally in the last few decades. Yet the reason for the
resurgence of this sexually transmitted infection remains poorly
understood.New techniques to analyze an old disease
According to the authors of the paper, little is known about the patterns of genetic diversity in current infections or the evolutionary origins of the disease. Because clinical samples from syphilis patients only contain low quantities of treponemal DNA and the pathogen is difficult to culture in the laboratory, researchers from the University of Zurich decided in 2013 to apply DNA capture and whole-genome sequencing techniques, as used by colleagues at the University of Tübingen, to ancient DNA samples.
The team collected 70 clinical and laboratory samples of syphilis, yaws, and bejel infections from 13 countries spread across the globe. Like syphilis bacteria, the closely related subspecies Treponema pallidum subsp. pertenue (TPE) and Treponema pallidum subsp. endemicum (TEN), which cause yaws and bejel, are transmitted through skin contact and show similar clinical manifestations.
By using genome-wide data, the researchers were able to reconstruct a phylogenetic tree showing a clear separation between the TPA lineage and the TPE/TEN lineage.
Advertisement
Current syphilis infections predominantly due to resistant strains from a pandemic cluster
Advertisement
An evolutionary finding of epidemiological relevance is that the SS14-Ω cluster originated from a strain ancestor in the mid-20th century - after the discovery of antibiotics. The worrying aspect of this pandemic cluster is its high resistance to azithromycin, a second-line drug that is widely used to treat sexually transmitted infections. Natasha Arora adds: "The good news is that, so far, no Treponema strains have been detected that are resistant to penicillin, the first-line antibiotic for syphilis treatment."
Co-author Philipp Bosshard from the University Hospital Zurich is continuing to collect Swiss patient samples in order to further study the clinical aspects of the work. The researchers are convinced that this type of analysis will open new opportunities to develop a comprehensive understanding of the epidemiology of syphilis - a devastating disease that persists to this day, despite the availability of treatment.
Source-Eurekalert