Neuroscientists have explained a molecular code that determines the shape, location and function of connections between individual neurons. Brain disorders like autism and schizophrenia could be better understood and treated with these findings.
Neuroscientists have explained a molecular code that determines the shape, location and function of connections between individual neurons. Brain disorders like autism and schizophrenia could be better understood and treated with these findings. The brain is an enormously complex organ. Understanding how billions of brain cells succeed in making precise connections is a major challenge for neuroscientists. Professor Joris de Wit and his team (VIB-KU Leuven) set out to explore the brain network in detail and came up with some interesting findings.
‘Unraveling the molecular code that determines the shape, location and function of connections between individual neurons in the brain is the first step in understanding brain disorders such as autism and schizophrenia.’
The human brain contains billions of neurons that form highly specialized and dazzlingly complex networks regulating everything from our thoughts, emotions and memory to our muscle movements. Signals are transmitted along these networks from one neuron to another at designated points of contact, called synapses. In order to get this many neurons connected in an organized and meaningful way, it is critical that synapse formation be tightly regulated. Professor Joris de Wit (VIB-KU Leuven) wants to know how, when and where these signal-transmitting connections arise: "How do neurons recognize their appropriate partners? How do they know which type of synapse needs to be where? These are very basic questions, highlighting how much we still need to learn about the brain."
Adhesion molecules
De Wit's team went looking for answers by studying adhesion molecules. These molecules can be found on the cell surface, where they physically connect neurons to one another. Neurons express large and diverse sets of adhesion molecules, but it is not clear why they would need so many different adhesion molecules.
Therefore, the team set out to study how a set of three different adhesion molecules, present in the same neurons in the hippocampus (the area of our brain responsible for memory), regulates neuronal connectivity.
Advertisement
A barcode at the synapse
Advertisement
"Think of it as a zip code or barcode for brain cells," explains Schroeder. "The adhesion molecules are digits with a specific function, but in combination they determine a more complex pattern that shapes the connection between two neurons. In other words, they define the identity of that connection."
In this way, the many different adhesion molecules found in neurons across the brain allow for precise fine-tuning of the different connections they make.
Connections and brain disease
All three adhesion molecules under investigation have been associated with neurodevelopmental and neuropsychiatric disorders, such as autism and schizophrenia. Understanding their role in brain connectivity is thus of vital importance, says de Wit: "Now that we understand that these adhesion molecules not only shape the number, but also the architecture and function of synapses, this may lead to a better understanding of how disease-associated mutations in the genes that encode these molecules affect circuit connectivity and function."
Source-Eurekalert