Scientists have found the reason why we can remember better after regular periods of rest.
Scientists have found the reason why we can remember better after regular periods of rest. Researchers at the RIKEN Brain Science Institute in Japan studied eye movement response in trained mice, and elucidated the neurological mechanism explaining why this is so.
Their results suggest that protein synthesis in the cerebellum plays a key role in memory consolidation, shedding light on the fundamental neurological processes governing how we remember.
The "spacing effect", first discovered over a century ago, describes the observation that humans and animals are able to remember things more effectively if learning is distributed over a long period of time rather than performed all at once.
The effect is believed to be closely connected to the process of memory consolidation, whereby short-term memories are stabilized into long-term ones, yet the underlying neural mechanism involved has long remained unclear.
Earlier research suggested that this spacing effect is the product of the transfer of the memory trace from the flocculus, a cerebellar cortex region that connects to motor nuclei involved in eye movement, to another brain region known as the vestibular nuclei.
To verify this idea, the team administered local anaesthetic to the flocculus and studied its effect on learning.
Advertisement
Explaining this observation, the researchers found that the spacing effect was impaired when mice were infused with anisomycin and actinomycin D, antibiotics which inhibit protein synthesis.
Advertisement
The findings have been published in the Journal of Neuroscience.
Source-ANI