Study reveals detailed molecular events underlying the transformation of ordinary fibroblast cells into therapeutic cardiac muscle cells.

‘Understanding the mechanism of successfully reprogramming fibroblasts into new heart cells may allow scientists to use this approach to treat heart disease.’

Heart disease kills more than 600,000 people each year in the United States alone and remains the leading cause of death for both men and women. It typically arises from the narrowing or blockage of coronary arteries and involves the progressive replacement of heart muscle cells (cardiomyocytes) with scar tissue - leading to a loss of heart function and ultimately heart failure. 




This progressive disease process occurs in part because cardiomyocytes have a very limited ability to proliferate and replace damaged heart muscle. Scientists therefore have been experimenting with techniques to transform fibroblasts - collagen-making cells that are abundant in the heart - into new cardiomyocytes. They have shown that they can make this therapeutic cell-reprogramming process work in the diseased hearts of lab mice and thereby improve heart function. But the process isn't as efficient as it needs to be for clinical use, and scientists are still learning why.
"The application of this technology has been limited by our lack of understanding of the molecular mechanisms driving this direct reprogramming process," said Conlon, who is also a member of the UNC McAllister Heart Institute.
For this study, Conlon's lab - in collaboration with the UNC McAllister Heart Institute lab of Li Qian, PhD, and the Princeton lab of Ileana Cristea, PhD - employed advanced techniques to map changes in protein levels in fibroblasts as they underwent reprogramming into cardiomyocytes.
Study overview
Advertisement
The researchers examined the levels of thousands of distinct proteins in the cells during the three-day transformation from fibroblasts to cardiomyocytes. In so doing, said Conlon, "We revealed a carefully orchestrated series of molecular events."
Advertisement
One of the most striking changes was a sharp rise in the level of a protein called Agrin, which has been found to promote repair processes in damaged hearts. Agrin also inhibits another signaling pathway called the Hippo pathway, known to be involved in regulating organ size. This finding - one of hundreds of individual clues generated by the study - raises the possibility that inhibition of Hippo signaling is needed for cardiomyocyte reprogramming.
Future studies will determine which of these myriad changes does indeed drive reprogramming, and more importantly which changes can be enhanced to improve reprogramming efficiency.
Source-Eurekalert