The way in which the botulinum neurotoxin survives the hostile environment in the stomach on its journey through the human body has been discovered by researchers
The way in which the botulinum neurotoxin survives the hostile environment in the stomach on its journey through the human body has been discovered by researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) and the Medical School of Hannover in Germany. Their study, published February 24 in Science, reveals the first 3D structure of a neurotoxin together with its bodyguard, a protein made simultaneously in the same bacterium. The bodyguard keeps the toxin safe through the gut, then lets go as the toxin enters the bloodstream. This new information also reveals the toxin's weak spot—a point in the process that can be targeted with new therapeutics.
"Now that we better understand the structure of the bacterial machinery that was designed for highly efficient toxin protection and delivery, we can see more clearly how to break it," said Rongsheng Jin, Ph.D., assistant professor in Sanford-Burnham's Del E. Webb Neuroscience, Aging and Stem Cell Research Center and senior author of the study.
The Janus-faced toxin
The botulinum neurotoxin is two-faced. On one side, it's the most poisonous substance known to man, causing botulism. Accidental botulinum neurotoxin poisoning is usually food-borne, but it's also considered a potential bioterrorism agent. On the other side, botulinum neurotoxin is also used an effective therapy and popular cosmetic, such as in BOTOX.
The neurotoxin accomplishes both the good and the bad using the same trick—paralyzing muscle cells by disrupting their connections with the nerves that tell them how and when to move. But before the neurotoxin can gain access to muscles and the neurons that control them, it must make a remarkable journey through the body—surviving the digestive enzymes and extreme acidic environment in the stomach, penetrating the small intestine, and entering the bloodstream.
Sneaking a peek at the neurotoxin and its bodyguard
Advertisement
These experiments helped the team visualize the atomic structure of all three parts of the toxin: 1) the region that recognizes neurons, 2) the enzyme that acts like a pair of scissors to cut human neural proteins and cause paralysis, and 3) the needle that punches holes to help deliver the enzyme to the nerve terminal. What's more, the researchers also captured the toxin's interaction with a second bacterial protein, called nontoxic nonhemagglutinin (NTNHA).
Advertisement
Towards prevention and therapy
According to Jin, this new knowledge about how the botulinum neurotoxin and NTNHA balance the need for strong binding and a timely release could be exploited to outsmart them.
"We now hope we might be able to fool the toxin and its bodyguard using a small molecule that sends the wrong signal—mimicking pH change, prematurely breaking up their protective embrace, and leaving the stomach's digestive enzymes and acid to do their job," he said. "We envision this type of therapy—either alone or in combination with other therapies currently in development—could be given preventively at a time when botulinum neurotoxin contamination becomes a public health concern."
Moreover, this type of therapy could be designed for oral delivery, rather than injection, making it easier to treat large numbers of people during an outbreak. A similar strategy could be used to deliver other protein-based drugs that usually need to be injected. "Here, protein drugs could be linked to a botulinum neurotoxin fragment and protected with NTNHA. Then we could possibly take them by mouth," Jin said.
Source-Eurekalert