Researchers are using imaging to characterize the genetic makeup of tumors paves the way for individualized, non-invasive treatment.
Magnetic Resonance Imaging (MRI) and radiomics could help analyze the heterogeneity of cancer cells within a tumor and allow for a better understanding of the causes and progression of individual disease, according to findings published in Clinical Cancer Research by researchers at Penn Medicine. Breast cancer can pose challenges for clinicians, at a cellular level. While one patient's tumor may differ from another's, the cells within the tumor of a single patient can also vary greatly. This can be problematic, considering that an examination of a tumor usually relies on a biopsy, which only captures a small sample of the cells.
‘MRI may not completely replace the need for tumor biopsies, but could augment what is currently the "gold standard" of care in breast cancer.’
Read More..
"If we're only taking out a little piece of a tissue from one part of a tumor, that does not give the full picture of a person's disease and of his or her response to specific therapies," said principal investigator Despina Kontos, PhD, an associate professor of Radiology in the Perelman School of Medicine at the University of Pennsylvania.Read More..
"We know that in a lot of instances, patients are over-treated, getting therapy that may not be beneficial. Or, conversely, patients who need more aggressive therapy may not end up receiving it.
The method we currently have for choosing the appropriate treatment for patients with breast cancer is not perfect, so the more steps we can take toward more personalized treatment approaches, the better."
Kontos and her colleagues wanted to determine whether they could use imaging and radiomics for more personalized tumor characterization. Using MRI, the researchers extracted 60 radiomic features, or biomarkers, from 95 women with primary invasive breast cancer.
After following up with the patients 10 years later, the group found that a scan that showed high tumor heterogeneity at the time of diagnosis -- meaning a high diversity of cells -- could successfully predict a cancer recurrence.
Advertisement
"Women who had more heterogeneous tumors tended to have a greater risk of tumor recurrence."
Advertisement
They found that their algorithm was able to successfully predict recurrence-free survival after 10 years. To validate their findings, the group compared their results to an independent sample of 163 patients with breast cancer from the publicly available Cancer Imaging Archive.
While imaging may not completely replace the need for tumor biopsies, radiologic methods could augment what is currently the "gold standard" of care, Kontos said, by giving a more detailed profile of a patient's disease and guiding personalized treatment.
Next steps for the research team will include expanding the analysis to a larger patient cohort and also further exploring which specific markers are more predictive of particular outcomes.
"We've just touched the tip of the iceberg," Kontos said. "Our results and the validation study give us confidence that there are many opportunities for these markers to be used in a prognostic and potentially a predictive setting."
Source-Eurekalert