Physical cues can replace certain chemicals when nudging mature cells back to a pluripotent stage, capable of becoming any cell type in the body reveals bio-engineers.
Physical cues can replace certain chemicals when nudging mature cells back to a pluripotent stage, capable of becoming any cell type in the body reveals bio-engineers at the University of California, Berkeley. The researchers grew fibroblasts cells taken from human skin and mouse ears on surfaces with parallel grooves measuring 10 micrometers wide and 3 micrometers high. After two weeks of culture in a special cocktail used to reprogram mature cells, the researchers found a four-fold increase in the number of cells that reverted back to an embryonic-like state compared with cells grown on a flat surface. Growing cells in scaffolds of nanofibers aligned in parallel had similar effects.
The study, published online Sunday, Oct. 20, in the journal Nature Materials, could significantly enhance the process of reprogramming adult cells into embryonic-like stem cells that can differentiate, or develop, into any type of tissue that makes up our bodies.
The 2012 Nobel Prize in Physiology or Medicine was awarded to scientists who discovered that it was possible to reprogram cells using biochemical compounds and proteins that regulate gene expression. These induced pluripotent stem cells have since become a research mainstay in regenerative medicine, disease modeling and drug screening.
"Our study demonstrates for the first time that the physical features of biomaterials can replace some of these biochemical factors and regulate the memory of a cell's identity," said study principal investigator Song Li, UC Berkeley professor of bioengineering. "We show that biophysical signals can be converted into intracellular chemical signals that coax cells to change."
Source-Eurekalert