Retroviruses HIV as well as HTLV-1, a virus that causes T-cell leukemia have distinct structural features and each assembles virus particles differently.
Most types of retroviruses have distinct, non-identical virus structures. Researchers analyzed seven different retroviruses including two types of HIV as well as HTLV-1, a virus that causes T-cell leukemia. They also examined retroviruses that infect birds, mice, chimpanzees and fish, that can cause cancer or immunodeficiency.// "Each kind of retrovirus has distinct structural features and each assembles virus particles differently," said Louis Mansky, Ph.D., director of the Institute for Molecular Virology, who is also a member of the Masonic Cancer Center. "Most researchers assume that all retroviruses are just like HIV, but they're not. We cannot take a one-size-fits-all approach when studying retroviruses and discovering new strategies for antiviral treatments or vaccines."
‘- HIV and HTLV-1 particles are quite distinct from one another in appearance, which also suggests fundamental differences in virus particle assembly.’
Mansky's team looked at the behavior of retrovirus Gag proteins, which drive retrovirus particle formation. Once the virus enters a cell, reverse transcriptase converts the viral RNA to DNA, which subsequently creates the Gag protein. Understanding the nature of Gag protein interactions with one another and how the structures form will help scientists better understand how and why the virus works. It will also help identify ways to target the virus and prevent it from infecting a cell in the first place.
The study examined virus-like particle size, cellular distribution and basic morphological features through three distinct microscopy techniques.
The team noted that:
- HIV-1 and HIV-2 have Gag proteins that assemble retrovirus-like particles with distinct structures and sizes, which implies that differences exist in how the two HIV types form new virus particles.
Advertisement
The team was surprised to find that one of the retroviruses, walleye dermal sarcoma virus (WDSV), did not readily produce virus particles. The disease can affect anything from 1-30 percent of walleye in a population, depending on the location. This research could help aquatic scientists better understand how to control the disease.
Advertisement
The study findings will help serve as a foundation for studying differences among retroviruses, including HIV.
"The scientific community can build off of our findings to develop new antiviral treatments, and hopefully determine how to stop these viruses from causing deadly diseases in humans such as cancer and AIDS," Mansky said.
Source-Eurekalert