There are many key drivers of human evolution and diversity, accounting for changes that occur between different generations of people.
There are many key drivers of human evolution and diversity, accounting for changes that occur between different generations of people. This is explained by new research published today (Sept 5) by world-renowned scientist Professor Sir Alec Jeffreys, who discovered DNA fingerprinting at the University of Leicester.
Professor Jeffreys has spent over two decades since his landmark discovery in 1984 investigating what he describes as "pretty bizarre bits of DNA" - highly variable repeated parts of DNA called 'minisatellites' - found in the human genome. Sir Alec observed that these seemed to be changing and "picking up mutations at an extraordinary rate" when compared to other DNA.
Now, in a paper published online in Nature Genetics (Sept 5), Sir Alec and his team in the Department of Genetics at the University of Leicester have demonstrated the remarkable influence of a particular gene on the development of diversity in humans.
The work was funded by the Medical Research Council, the Wellcome Trust, the Boehringer Ingelheim Fonds, the Royal Society and the Louis-Jeantet Foundation. Professor Jeffreys is Royal Society Wolfson Research Professor of Genetics at Leicester.
Sir Alec said: "In each generation our genetic make-up gets 'reshuffled', like a genetic pack of cards, by a process called recombination - a fundamental engine driving diversity. The work we have done over the past 10 years at Leicester has been key to understanding recombination in humans, and has allowed the molecular definition of recombination 'hotspots' - small regions in which the reshuffling process is focused.
"Our new study has focused on a gene called PRDM9 that makes a protein which binds to DNA and triggers hotspot activity. The exciting finding is that people with different versions of PRDM9 show profoundly different recombination behaviours, not only in hotspots but also in chromosomal rearrangements that cause some genetic disorders."
Advertisement
Sir Alec believes the research, along with that of others working in the field, will inevitably further scientists' ability to understand the basic processes that make us all genetically unique, as well as defining an entirely new class of genetic risk factor for numerous disease-causing DNA rearrangements that can arise when recombination goes wrong.
Advertisement
Source-Eurekalert