A joint study hopes to shed more light on how influenza virus manage to escape extermination.
A joint study conducted by researchers at Faculty of Bioengineering and Bioinformatics of the Moscow State University (MSU) and Central Research Institute of Epidemiology and the Institute for Information Transmission Problems of the Russian Academy of Sciences (IITP) hopes to shed more light on how influenza virus manage to escape extermination from both the anti-viral drugs and the body’s immune response thanks to point mutations in the influenza virus genes and what causes the profound genetic shifts, known as reassortments, that give rise to threat of major pandemics. One of the authors, professor Alexey Kondrashov, is also affiliated with the University of Michigan. The results were published on January 9 in PLoS Genetics.
Georgii Bazykin, the corresponding author on the paper, who is a leading researcher at the Faculty of Bioengineering and Bioinformatics at the MSU and the head of the Molecular Evolution division at IITP, explains: "Influenza virus genome consists not of a single DNA or RNA molecule as many other viruses do, but of eight individual segments resembling in some sense the chromosomes of the human genome. Every segment is a separate RNA molecule." If different strains co-infect a single cell, their genomes may exchange these segments in a process called reassortment. This may lead to emergence of a novel genome consisting, for instance, of three segments obtained from one viral genome and five segments from another.
"Most major flu epidemics that we know were caused by such reassortments, -- proceeds Bazykin. – When you analyze the strains that have caused these outbreaks, you find that they had combinations of viral genome segments that were never seen together before. This was the case for the 1957 and the 1968 pandemics, as well as for the swine flu in 2009. The deadliest Spanish flu pandemic of 1918 had probably the same nature, although it is hard to be certain for the events so distant in time."
A reassortment may produce a highly virulent strain, because a strong genetic shift makes it "unfamiliar" to the immune system of most humans, which allows the virus to spread efficiently throughout the population.
This is the evolutionary scenario known as antigenic shift. Another path, known as antigenic drift, is a process of gradual accumulation of smaller mutations. These mutations cause changes in the viral antigenic proteins, primarily, the surface antigens hemagglutinin (HA) and neuraminidase (NA). The genes coding for these proteins evolve rapidly in the course of the arms race between the virus and immune system.
"The seasonal flu outbreaks are primarily caused by this antigenic drift, -- explains Georgii Bazykin. -- Hence every year many of us catch a flu caused by a new strain of the constantly evolving virus."
Advertisement
"We believe that this effect is connected to the fact that reassorted genes have to operate in a new genetic environment, -- says Bazykin. -- Since genes are connected to each other, if gene A has changed, a new version of gene B is also likely to be preferable. As a result, every reassortment event is followed by a trail of additional point mutations."
Advertisement
Source-Eurekalert