By avoiding respiratory suppression side effect activating pathway, safer opioids can now be produced
Separating two common opioids pathways could help separate respiratory depression side effect associated with opioid drugs, found a new study published in Cell journal. Opioid pain relievers are extremely effective in relieving pain, but upon repeated use, can carry a high risk of addiction and ultimate overdose. Opioid medications suppress pain by binding to specific receptors (proteins) in the brain; these same receptors also produce respiratory suppression. However, the way these receptors act to regulate pain and breathing may be fundamentally different.
‘The opioid drugs can be designed to turn on only the signaling pathways associated with pain relief and avoid those related to respiratory suppression, the common side effect with increased dose.’
Studies using mouse genetic models suggest that avoiding one particular signaling pathway led to more favorable responses to morphine (pain relief without respiration effects). The investigators then explored if they could make drugs that would turn on the pathways associated with pain relief and avoid the pathways associated with respiratory suppression.
"We are pleased to have uncovered a potential new mechanism to create safer alternatives to opioid medications, ones that would be far less likely to cause the side effects that lead to overdose deaths associated with the misuse of opioids," said NIDA Director Nora D. Volkow, M.D.
"We are excited that basic research on how opioid drugs work in the brain has led to this novel approach, and that we continue to make critical progress in this area."
How the pathways split following receptor activation is referred to as biased signaling. The study showed that as the degree of bias (divergence) increased, so too did the ability of an opioid to reduce pain in mice without affecting breathing.
Advertisement
"In this study, we demonstrate that this divergence, which we call biased agonism, is not an 'all or none' phenomenon, but rather exists as a spectrum. As such, if a small degree of divergence between pathways in cell culture produces a minimal benefit in living organisms, there is potential to chemically improve the signaling bias and subsequently improve the therapeutic safety window," said Laura M. Bohn, Ph.D., principal investigator on the study from The Scripps Research Institute.
Advertisement
Source-Eurekalert