On the agenda at a major scientific meeting is the bedbug's most closely guarded secrets.

The bedbug presentation is part of an international research award symposium at the ACS National Meeting, which includes 12 other research papers on topics ranging from pesticide resistance to monitoring chemicals in the environment to tick spit.
"Every living thing on Earth has a unique set of strategies to adapt to life-threatening situations in the environment," said Fang Zhu, Ph.D., a leader of the research who spoke at the meeting. "The surprise discovery we never expected is that most of the genes responsible for pesticide resistance in the bedbug are active in its outer skin-like shell or cuticle. This is the unique adaption that has not been discovered in cockroaches, termites, ants or other insects."
Zhu of Washington State University and colleagues, who are with the University of Kentucky, quickly realized that the location was the ideal spot for genes that mute the effects of pyrethroid insecticides — today's mainstay home and garden pesticides. The bodies of bedbugs, she explained, are extremely flat before the creatures slurp up a meal of human blood. That profile adapts bedbugs for a life of hiding in the seams of mattresses, upholstered chairs, the lining of suitcases and other concealed locations. But it also creates a vulnerability to environmental toxins, giving bedbugs an unusually large surface area where pesticides can enter their bodies. The shell is tough — and accounts for the difficulty in squashing a bedbug. But research by Zhu's team and others has established that it's also a metabolic hot spot to protect against insecticides. Some genes in the cuticle, for instance, produce substances that tear apart the molecular backbone of insecticides, rendering them harmless. Other genes manufacture biological pumps that literally pump insecticides back out of the cuticle before they can enter the body.
Zhu's team sifted through the bedbug's genome — its complete set of genes — to identify the genes responsible for this pesticide resistance. They studied 21 populations of bedbugs from cities in Ohio and Kentucky (Cincinnati, Lexington and Louisville) that were plagued with bedbug infestations.
"We took advantage of cutting-edge next-generation genetic sequencing technology that's now available. It enabled us to perform quickly an analysis that would have taken years in the 1990s — a genome-wide analysis of the insecticide-resistance related genes in bedbugs."
Advertisement
Zhu said the findings suggest that development of new pesticides should focus on chemicals that shut down or mute genes in the cuticle that thwart today's pesticides. New pesticides alone, however, will not be enough to cope with the bedbug resurgence. Zhu cited evidence that bedbugs in laboratory colonies exposed to lethal doses of pyrethroids begin to develop resistance within a few generations, which can be less than one year.
Advertisement
She cited, specifically, integrated pest management for bedbugs, approaches in which careful use of pesticides combines with other, common-sense measures. Those include removing bedroom clutter where bedbugs can hide, frequent vacuuming of dust and other debris, washing bed linens in hot water and heat-drying in a dryer, and sealing cracks and crevices to eliminate hiding places.
Source-Eurekalert