University of Southampton scientists are in the process of developing a laboratory-based system to accurately predict immune responses and could reduce the need for testing on animals.
University of Southampton scientists are in the process of developing a laboratory-based system to accurately predict immune responses and thereby reduce the need for testing on animals. It is hoped that the assays will help avoid incidents such as the TGN1412 trials in London six years ago, which saw six healthy volunteers experience severe adverse reactions to a clinical drug that had been tested on animals with no effects.
Martin Glennie, Professor of Immunochemistry and Head of Cancer Sciences at the University, says: "Animal testing remains the industry standard for predicting patient toxicity but it can underestimate or even miss the levels of toxicity observed in the first-in-human trials, as we saw with the TGN1412 trials in 2006. Predicting toxicity using in vitro human assays would reduce the risk of incidents like this and also refine pre-clinical animal testing."
The study is funded by the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) under its CRACK IT scheme, a ground-breaking open innovation programme to fund projects that accelerate the application of the 3Rs.
Professor Glennie, together with Dr Tony Williams, Reader in Clinical Immunology and Allergy at the University of Southampton, will work with a team of researchers, which includes Dr Mark Coles of the Centre for Immunology and Infection at the University of York, to test a range of drugs called monoclonal antibodies to see if they can find a way of predicting their toxicity in patients.
It is known that most of the toxicity seen when using monoclonal antibodies comes from blood cells called lymphocytes. When these cells become activated patients feel ill, with symptoms ranging from a mild cold, to life-threatening swelling of vital organs. These activated lymphocytes make important 'messenger' molecules called cytokines and it is these messengers which cause the toxicity during a so-called 'cytokine storm'.
Drug testing in animals does not always predict how a monoclonal antibody will behave in patients. Southampton scientists will develop laboratory-based tests that will reliably predict cytokine release when a monoclonal antibody is given to patients.
Advertisement
Source-ANI