Medindia LOGIN REGISTER
Medindia

Scientists Uncover Protein Modification Involved in Muscular Dystrophy, Cancer

A new type of chemical modification on an important muscle protein has been discovered by scientists at University of Iowa.

A new type of chemical modification on an important muscle protein has been discovered by scientists at University of Iowa. This is a feat that could improve the understanding of certain muscular dystrophies and could pave way for new treatments for the conditions.

The findings may also have implications for detecting metastasizing cancer cells.

After being made, most proteins are modified through the addition of sugar chains, fats or other chemical groups, which can completely change how a protein works and where it is located in the body.

Disruption of these modifications can alter protein function, too, and can lead to disease.

The study focused on dystroglycan, a cell membrane protein that is disrupted in many forms of muscular dystrophy.

Normal dystroglycan is modified with a unique sugar chain that allows the protein to "glue" muscle membranes to the basal lamina -- a tough layer of extracellular proteins.

The arrangement reinforces the fragile muscle membrane and prevents small tears that occur naturally from expanding and damaging the membrane.

Advertisement
Recent work has shown that disrupting dystroglycan's ability to attach to the basal lamina causes congenital muscular dystrophies and also leads to cancer progression in epithelial cell cancer.

In these conditions, the dystroglycan sugar chain is incompletely or incorrectly assembled and the dystroglycan cannot bind tightly to laminin.

Advertisement
"Dystroglycan is a complex and unusual glycoprotein. It is heavily covered with many types of sugars. We wanted to know the shape and make up of the unique sugar chain that allows dystroglycan to bind to laminin," said study leader Dr. Kevin Campbell.

Lead study author Dr. Takako Yoshida-Moriguchi, used a combination of biochemical methods and chemical and structure analysis to determine that a critical link within the sugar chain involves a phosphate group.

Such link is found in yeast and fungi but has not previously been found in higher organisms like mammals.

"This phosphate link is very unusual, which may explain why the actual structure of dystroglycan's laminin-binding sugar chain has been a mystery for many years despite the efforts of numerous research teams. The findings help explain what is happening in congenital muscular dystrophies where the dystroglycan sugar chain is truncated and ends at the phosphate. The bare phosphate does not bind laminin; it has to be further modified," said Campbell.

Several enzymes are involved in building the sugar chain beyond the phosphate, and mutations in these enzymes are the cause of congenital muscular dystrophies.

"If we can discover the entire structure and make up of the sugar chain beyond the phosphate link, we might be able to target some of the enzymes involved in building the sugar chain, and thus, develop therapies to treat congenital muscular dystrophies," said Campbell.

In certain cancer cells, one of these enzymes, known as LARGE, also is suppressed.

Campbell speculated that loss of LARGE activity produces dystroglycan that is unable to interact with the basal lamina, which makes the cancer cells more mobile and allows them to escape into the bloodstream.

The findings could lead to new methods for tracking metastasising cancer cells.

The study appears in the latest issue of the journal Science.

Source-ANI
RAS


Advertisement

Home

Consult

e-Book

Articles

News

Calculators

Drugs

Directories

Education