Snoozing does more than help us recover from tensions and weariness - it helps the brain clear clutter accumulated after a long day's work and make way for new learning.
Snoozing does more than help us recover from tensions and weariness - it helps the brain clear clutter accumulated after a long day's work and make way for new learning.
Shutting down during the night helps the body to produce new synapses which connect brain cells.Researchers at Washington University School of Medicine in St. Louis believe if synapses are not renewed they become saturated with knowledge which stops people absorbing new information.
"There are a number of reasons why the brain can't indefinitely add synapses, including the finite spatial constraints of the skull," says senior author Paul Shaw, Ph.D., assistant professor of neurobiology at Washington University School of Medicine in St. Louis.
"We were able to track the creation of new synapses in fruit flies during learning experiences, and to show that sleep pushed that number back down," he added.
Many aspects of fly sleep are similar to human sleep; for example, flies and humans deprived of sleep one day will try to make up for the loss by sleeping more the next day. Because the human brain is much more complex, Shaw uses the flies as models for answering questions about sleep and memory.
Sleep is a recognized promoter of learning, but three years ago Shaw turned that association around and revealed that learning increases the need for sleep in the fruit fly. In a 2006 paper in Science, he and his colleagues found that two separate scenarios, each of which gave the fruit fly's brain a workout, increased the need for sleep.
Advertisement
Researchers also gave male fruit flies their first exposure to female fruit flies, but with a catch-the females were either already mated or were actually male flies altered to emit female pheromones. Either fly rebuffed the test fly's attempts to mate.
Advertisement
Researchers concluded that these flies had encoded memories of their prior experience, more directly proving the connection between sleep and new memories.
Scientists repeated these tests for the new study, but this time they used flies genetically altered to make it possible to track the development of new synapses, the junctures at which brain cells communicate.
"The biggest surprise was that out of 200,000 fly brain cells, only 16 were required for the formation of new memories, " says first author Jeffrey Donlea, a graduate student.
"These sixteen are lateral ventral neurons, which are part of the circadian circuitry that let the fly brain perform certain behaviors at particular times of day," he added.
When flies slept, the number of new synapses formed during social enrichment decreased. When researchers deprived them of their sleep, the decline did not occur.
Donlea identified three genes essential to the links between learning and increased need for sleep: rutabaga, period and blistered. Flies lacking any of those genes did not have increased need for sleep after social enrichment or the mating test.
Blistered is the fruit fly equivalent to a human gene known as serum response factor (SRF). Scientists have previously linked SRF to plasticity, a term for brain change that includes both learning and memory and the general ability of the brain to rewire itself to adapt to injury or changing needs.
Source-ANI
SRM