Researchers have found that the amount of time a blood is stored in a blood bank can have a negative effect on its ability to carry oxygen.
Researchers at University of Illinois have found that the amount of time a blood is stored in a blood bank can have a negative effect on its ability to carry oxygen into the tiny microcapillaries of the body. Using advanced optical techniques, the researchers measured the stiffness of the membrane surrounding red blood cells over time. They found that, even though the cells retain their shape and hemoglobin content, the membranes get stiffer, which steadily decreases the cells' functionality.
Led by electrical and computer engineering professor Gabriel Popescu, the team published its results in the journal Scientific Reports.
"Our results show some surprising facts: Even though the blood looks good on the surface, its functionality is degrading steadily with time," said Popescu, who is also part of the Beckman Institute for Advanced Science and Technology at the U. of I.
Nearly 14 million units of blood are banked annually in the U.S. The established "shelf life" for blood in blood banks is 42 days. During that time, a lot of changes can happen to the blood cells – they can become damaged or rupture. But much of the blood keeps its shape and, by all appearances, looks like it did the day it was donated.
Popescu and his colleagues wanted to quantitatively measure blood cells over time to see what changed and what stayed the same, to help determine what effect older blood could have on a patient. They used a special optical technique called spatial light interference microscopy (SLIM), a method developed in Popescu's lab at Illinois in 2011. It uses light to noninvasively measure cell mass and topology with nanoscale accuracy. Through software and hardware advances, the SLIM system today acquires images almost 100 times faster than three years ago.
The researchers took time-lapse images of the cells, measuring and charting the cell's properties. In particular, they were able to measure nanometer scale motions of the cell membrane, which are indicative of the cell's stiffness and function. The fainter the membrane motion, the less functional the cell, much like how a fainter pulse indicates problems with a patient.
Advertisement
"In microcirculation such as that in the brain, cells need to squeeze though very narrow capillaries to carry oxygen," said postdoctoral researcher Basanta Bhaduri, the lead author of the paper. "If they are not deformable enough, the oxygen transport is impeded to that particular organ and major clinical problems may arise. This is the reason why new red blood cells are produced continuously by the bone marrow, such that no cells older than 100 days or so exist in our circulation. "
Advertisement
Source-Eurekalert