A new study conducted in rodents has discovered that Fetal Alcohol Spectrum Disorders and Autism Spectrum Disorder share certain common molecular vulnerabilities.
A new study conducted in rodents has discovered that Fetal Alcohol Spectrum Disorders (FASD) and Autism Spectrum Disorder (ASD) share certain common molecular vulnerabilities and some of the effects of alcohol exposure can be alleviated by providing a low dose of thyroid hormone thyroxin (T4) to pregnant mothers. Results will be published in the November 2013 issue of Alcoholism: Clinical & Experimental Research and are currently available at Early View.
"Disorders that occur in infancy and childhood are considered neurodevelopmental in origin," said Eva E. Redei, the David Lawrence Stein Professor at Northwestern University Feinberg School of Medicine as well as corresponding author for the study. "ASD is thought to be triggered by genetics, prenatal and perinatal environmental factors, and other undefined causes. Autistic children and adults have differing degrees of difficulties with initiating social interactions with others, and also seem to have a deficit in social sense. Similarly, children and adults with FASD have deficits in social skills, and show unresponsiveness to social cues, a lack of reciprocal friendships, a lack of tact, and difficulty in cooperating with peers."
"This work is a continuation of a line of research that the investigators have pursued for many years," notedR. Thomas Zoeller, a professor of biology at the University of Massachusetts Amherst. "It should be recognized that comparing FASD with ASD is difficult in itself because ASD has no known single cause and there are no biochemical markers in blood that 'identify' the disorder; ASD is defined behaviorally. This is also somewhat true of FASD, but part of its definition is a history of maternal alcohol consumption."
"Maternal hypothyroidism and maternal alcohol consumption have similar consequences on the offspring, particularly related to learning and memory abnormalities in both animals and humans," added Redei. "In a previous study, we administered a much larger dose of thyroid hormone to the alcohol-consuming rat mothers, and found that their learning and memory deficit was eliminated by this treatment. In this study, we wanted to find the smallest dose of thyroid hormone that effectively reverses behavioral consequences of FASD."
Redei and her colleagues provided four different diets – standard lab chow, pair-fed nutritional chow, alcohol, or alcohol supplemented with 0.3, 1.5, or 7.5 mg of T4 per liter – to groups of Sprague-Dawley rats during pregnancy. In the adult offspring, social behavior and memory were tested; in addition, measures were recorded for plasma total T4, free T3, and thyroid-stimulating hormone as well as hippocampal expression of genes known to be causally related to ASD.
"We found that male offspring of mothers who consumed alcohol during pregnancy interacted much less with a young, non-threatening animal than the offspring of control mothers," said Redei. "When we investigated ASD-associated candidates in the brains of these offspring, we found that prenatal alcohol exposure altered the levels of these markers in the male brain. Furthermore, administering low dose thyroid hormones to the alcohol-consuming mother rat reversed the effects on social deficits and altered levels of ASD-associated gene candidates in the brains of the offspring."
Advertisement
Redei was hesitant to draw parallels between her rodent findings and human applications. "Caution is needed to interpret these results for their relevance to treatments in human FASD and ASD," she said. "Human studies are needed to establish that the parallel seen in this animal model – that FASD and ASD may share some common mechanism of disturbance in neurodevelopment – exists for these diseases on a human level. Hopefully these research findings, with more work, can translate into novel treatment strategies for these devastating disorders."
Advertisement
Source-Eurekalert