Insights into how the NOD2 pathway is controlled could lead to new drugs to treat inflammatory diseases.
Faults in a critical immune pathway has been linked to inflammatory diseases such as Crohn's disease and multiple sclerosis. But a new study by a research team from Walter and Eliza Hall Institute in Melbourne, Australia, sheds light on how this immune response is controlled, which could lead to new drugs for people with these chronic diseases. At a glance
‘A protein called xIAP, the 'master controller' initiates inflammation via the NOD2 pathway and manipulating the regulators of this pathway could help treat inflammation.’
• Crohn's disease and multiple sclerosis are linked to defects in the NOD2 immune pathway that enables uncontrolled inflammation. • Scientists identified key regulators that are essential for controlling the inflammatory response in these conditions.
• The discovery will assist researchers in identifying new, targeted treatments for inflammatory diseases including Crohn's disease and multiple sclerosis.
A NOD to inflammatory diseases
Mr Che Stafford, Dr Ueli Nachbur, Professor John Silke and colleagues at the Institute led the research, which was published in Cell Reports.
Advertisement
Inflammatory diseases such as multiple sclerosis, Crohn's disease (an inflammatory bowel disease) and inflammatory skin diseases have been linked to faults in how the NOD2 pathway is regulated.
Advertisement
"Inflammation occurs when our immune cells release inflammatory messengers, or cytokines, which is a normal response to disease. However when too many cytokines are produced, inflammation can get out-of-control and damage our own body - a hallmark of inflammatory diseases," Dr Nachbur said.
Inflammatory 'controllers' identified
Mr Stafford said the research team showed that a protein called xIAP was the 'master controller' that initiated inflammation via the NOD2 pathway.
"We revealed that xIAP was the key to initiating the inflammatory response in these cells," Mr Stafford said. "We also showed that, once the NOD2 pathway trigger is initiated, the cells need a second, amplifying step to complete a full-strength immune response."
Knowing the key players in the entire NOD2 pathway, from initiators to enhancers, would pave the way for new strategies to treat inflammatory diseases, Mr Stafford said.
"Targeting key components of the NOD2 pathway shows promise as a way of switching off ongoing inflammation associated with diseases such as Crohn's disease and multiple sclerosis.
"In 2015 our research team showed that blocking a different protein in the NOD2 pathway could halt inflammation, and was able to halt the progression of multiple sclerosis in a preclinical model. So it is very exciting to identify other potential targets for treating these diseases," he said.
Need for targeted treatments
Clarifying how the NOD2 pathway was regulated on a molecular level was important for developing new treatments for inflammatory diseases, Dr Nachbur said.
"Chronic inflammatory conditions such as Crohn's disease and multiple sclerosis have a very significant impact to people's lives and new, targeted treatments are urgently needed.
"xIAP has other roles in the cell, such as regulation of cell death, so it is a tricky target for treating inflammatory diseases. However these new discoveries provide us with vital information to develop new treatment strategies that could lead to a safe and effective way of switching off inflammation for treating disease," Dr Nachbur said.
Source-Eurekalert