Robert Watson, a graduate student has found the uncommon path taken by Campylobacter jejuni (campylobacter), as it infects cells
Robert Watson, a graduate student in the Section of Microbial Pathogenesis at Yale University School of Medicine has found the uncommon path taken by Campylobacter jejuni (campylobacter), as it infects cells.
Records show that, 'campylobacteriosis', one of the most common causes of diarrhea worldwide, strikes 2.4 million Americans a year. Most sufferers recover after a few unpleasant days, but it can be life threatening to those with compromised immune systems including individuals with AIDS. In addition, a rare but serious complication of campylobacter infection triggers off the autoimmune disorder, Guillain-Barré paralysis.Since the intestinal lining cells that campylobacter infects do not normally take up bacteria -- or any particles as large as bacteria -- Watson and his advisor, Jorge Galán, the Lucille P Markey Professor of Microbiology and Cell Biology, set out to investigate the path of infection through cells. They found that campylobacter apparently enters into the endocytic pathway that cells use to recycle molecules from their surface. It then quickly diverts its path, creating its own intracellular network of campylobacter-filled vacuoles, or cellular pockets, that make their way toward the nucleus, and finally locate near the cell's transportation hub, the Golgi apparatus.
'It's been known for over two decades that campylobacter can enter intestinal epithelial cells -- but until now no one could show how it was taken up or where it localized. That suggested it had evolved a special mechanism for uptake,' said Watson. 'Campylobacter seems to have found a special access to these cells and establishes its own intracellular niche.'
'Chicken has been notorious as a source of campylobacter,' said Watson. 'While the public has been aware of salmonella as a contaminant, the January 2007 issue of Consumer Reports highlights the increase in campylobacter as a problem. Their nationwide analysis of fresh, marketed chicken showed that as much as 80 percent of the meat they tested harbored campylobacter.'
Usually, material entering the cell moves to compartments called lysosomes, where an acidic mix of enzymes breaks it down. By monitoring markers for this entry pathway, Watson and Galán could watch as the microbe infected a host cell, briefly associated with the early marker protein EEA-1, and then with the late marker Lamp-1.
'Although the marker proteins indicated that campylobacter trafficked to conventional lysosomes, information from traceable dyes indicated something different,' said Watson. While the dyes passed through the endocytic pathway and localized with other material in lysosomes, surprisingly, the dyes did not enter the vacuoles containing campylobacter -- these bacteria had left the conventional pathway.
Advertisement
'Seeing the path these bacteria follow gives us new perspective for understanding infection and devising ways to combat it,' said Galán. As the next step in understanding campylobacter, Watson and Galán are continuing and expanding the work to include studies in special strains of mice that are infected by, and harbor the bacteria but do not show the acute symptoms of infection.
Advertisement
PRI/M