Generally, sodium gets a bad rap for contributing to hypertension and cardiovascular disease.

The approach breaks new ground in the field of biomedicine because it requires no gene therapy; can be administered after an injury has occurred and even after the wound has healed over; and is bioelectric, rather than chemically based.
In a paper appearing as the cover story of the September 29, 2010, issue of the Journal of Neuroscience, the Tufts team reported that a localized increase in sodium ions was necessary for young Xenopus laevis tadpoles to regenerate their tails – complex appendages containing spinal cord, muscle and other tissue.
Like human beings, who regenerate fingertips only as children, these tadpoles lose the ability to regenerate their tail with age. Most remarkably, it was shown that such "refractory" tadpoles whose tails had been removed could be induced to make a perfect new tail by only an hour of treatment with a specific drug cocktail.
The findings have tremendous implications for treating wounds sustained in war as well as accidental injuries. The treatment method used is most directly applicable to spinal cord repair and limb loss, which are highly significant medical problems world-wide. It also demonstrates a proof-of-principle that may be applicable to many complex organs and tissues.
"We have significantly extended the effective treatment window, demonstrating that even after scar-like wound covering begins to form, control of physiological signals can still induce regeneration. Artificially causing an influx of sodium for just one hour can overcome a variety of problems, such as the decline in regenerative ability that comes with age and the effect of regeneration-blocking drugs," said Tufts Professor of Biology Michael Levin, Ph.D., corresponding author on the paper and director of the Center for Regenerative and Developmental Biology at Tufts. Co-authors were Research Associate Ai-Sun Tseng, Postdoctoral Associate Wendy S. Beane, Research Associate Joan M. Lemire, and Alessio Masi, a former post-doctoral associate in Levin's laboratory.
Advertisement
"This is a novel, biomedically-relevant approach to inducing regeneration of a complex appendage," noted Levin.
Advertisement
"The ability to restore regeneration using a temporally-controllable pharmacological approach not requiring gene therapy is extremely exciting," said the researchers.
Of critical importance, they said, was the discovery that the tail could be induced to regenerate as late as 18 hours after amputation, revealing that tissues normally fated for regenerative failure still maintain their intrinsic characteristics and can be programmed to reactivate regeneration.
Amphibians such as frogs can restore organs lost during development, including the lens and tail. The frog tail is a good model for human regeneration because it repairs injury in the same way that people do: each tissue makes more of itself. (In contrast, regeneration in some other animals occurs through transdifferentiation (one cell type turns into another cell type) or adult stem cell differentiation. Furthermore, though small, the Xenopus larval tail is complex, with muscle, spinal cord, peripheral nerves and vasculature cells.
Source-Eurekalert