Medindia LOGIN REGISTER
Medindia

Transforming Magnetic Resonance Imaging With Metamaterials

by Swethapriya Sampath on Aug 28 2024 4:37 PM
Listen to this article
0:00/0:00

Transforming Magnetic Resonance Imaging With Metamaterials
Magnetic resonance imaging (MRI), used for noninvasive examination of the human body by doctors, has become a vital tool for the diagnosis, treatment, and detection of injuries and diseases.
However, not everyone has benefited equally. The most advanced MRI technology available today is frequently large, hard, and costly, which restricts its application and effectiveness in rural and low-resource areas.

Engineer Xin Zhang and her team at Boston University are trying to make MRIs more accessible to the general public by creating innovative technologies that can make scans accurate, easier, and less expensive (1 Trusted Source
Making MRI More Globally Accessible

Go to source
).

They’ve tried it by using metamaterials, which are precisely engineered structures that control radio frequencies and electromagnetic waves using common building blocks like cloth, copper, and plastic.


Advertisement

Versatility of Metamaterials

Their work has led to a string of breakthrough devices that can sharpen and speed up MRI imaging of knees, ankles, spines, and more. Each new metamaterials tool and method—from resonators that manipulate magnetic fields to wearable, jewelry-like bracelets that cut background noise—is capable of dramatically boosting the power of MRI. The researchers have reported their findings in a series of recent journal articles.

“How can we improve MRI technology to enable clear imaging that’s also affordable, accessible, and tolerable for patients?” says Zhang, a BU College of Engineering distinguished professor of engineering. “This is a practical problem I’ve been interested in for a long time.”


Advertisement

Modifying Magnetic Fields

Zhang, who has studied the use of metamaterials in a diverse range of fields, from optical applications to noise reduction, began focusing on their potential to improve medical imaging in 2016. Within a few years, she and her team had developed what she calls an “intelligent metamaterial” to speed up scans, as well as a tunable helmet that could channel an MRI machine’s magnetic field to deliver clearer images of the brain and drastically cut scanning time.

In one of the latest papers, published in Advanced Science, they build on that work with computationally designed wearable metamaterials that can be fitted to any part of the body—even irregularly shaped areas like the elbow or knee. In the article, the researchers show examples of how the metamaterials could be used to improve scans of the ankle (picture a brace of connected discs surrounding the joint).

Because they “readily conform to a patient’s knee, ankle, head, or any part of the body in need of imaging…while ensuring an optimal resonance frequency,” the researchers write, the new tech could facilitate “the widespread adoption of metamaterials in clinical MRI applications.”


Advertisement

Smart Design of MRI

In their earlier work, the team was able to manually design the helmet to fit over the human head. But in the latest study, says Ke Wu (ENG’23), first author of the paper and a postdoctoral fellow in Zhang’s lab, “we recognized that free-form deployable metamaterials fitted to other parts of the body would require computational aid.”

Wu developed algorithms and programs capable of analyzing a 3D scan of a part of the body and, within less than a second, calculating the geometry and arrangement of helical resonators—structures made of plastic and thin copper coils—that can manipulate the magnetic field of MRI. Critically, these arrays of coils help to improve the signal-to-noise ratio (SNR) of MRI of the target area, reducing the fuzziness of imaging that’s caused when background electromagnetic signals seep into view.

Wu’s computational programs use the principles of circle packing—a geometric approach to squeezing circles together without any of them overlapping—to determine the best array and architecture for arranging the magnetic coils. They can also be tuned to resonate with a particular radio frequency, while the free-form shapes can be integrated into comfortable, wearable cuffs.

Enhancing MRI with Affordable Materials

In related work published in an Advanced Materials paper, Zhang’s team demonstrated an alternative wearable metamaterial design for MRI that replaces copper and plastic coils with loops made from coaxial cables—the same cables used to bring you the internet. Coaxial cables are designed to transmit and shield high-frequency electrical signals from their surroundings, preventing unintended loss of signal. “This material has inherent advantages because it is lightweight, flexible, and restricts the electrical field to exactly where you want it,” says Xia Zhu (ENG’26), first author of the paper and a graduate student in Zhang’s lab.

Zhu created fabric-based wearable metamaterials—each using only about $50 of supplies—designed to bring loops of coaxial cables as close as possible to the part of the body undergoing a scan. In the paper, the team illustrates a potential knee scan: a pad of lightweight fabric, covered with a handful of coils, bending to the curve of the patient’s leg as they lie in the MRI machine. The researchers found it achieved “substantial electric field attenuation in its proximity, thereby minimizing electric field exposure to the imaging subject.”

Pushing even further, the team sought to develop an entirely wireless, formfitting wearable metamaterial that could boost SNR and passively tune and amplify the MRI signal. “To create a design this simple and elegant, we had to solve several problems first,” says Zhang, who’s affiliated with the BU Photonics Center, which provided technical assistance for much of the latest research.

In a paper published in Science Advances with their longtime collaborator Stephan W. Anderson, a BU Chobanian & Avedisian School of Medicine professor of radiology, Zhang’s team demonstrated that the coaxial cables can be arranged into freestanding cuffs without additional support materials—no fabric needed. They prototyped rings and cuffs sized to enhance MRI scans of the spine, the wrist, and a single finger—and in every experiment proved their seemingly simple design could amplify SNR and enable crisp MRI. The looped and ringed cables look like modern art or custom jewelry.

“Our recent designs demonstrate several strategies for using metamaterials to boost MRI using low-cost materials,” Zhang says, “which we hope will be translated into technologies that allow more patients around the world to benefit from MRI".

Reference:
  1. Making MRI More Globally Accessible - (https://www.bu.edu/eng/2024/08/09/making-mri-more-globally-accessible/)


Source-Eurekalert


Advertisement