Tweezers often come handy while removing splinters or plucking eyebrows.
Tweezers often come handy while removing splinters or plucking eyebrows. In new research, Hao Yan and his colleagues at Arizona State University's Biodesign Institute describe a pair of tweezers shrunk down to an astonishingly tiny scale. When the jaws of these tools are in the open position, the distance between the two arms is about 16 nanometers—over 30,000 times smaller than a single grain of sand.
The group demonstrated that the nanotweezers, fabricated by means of the base-pairing properties of DNA, could be used to keep biological molecules spatially separated or to bring them together as chemical reactants, depending on the open or closed state of the tweezers.
In a series of experiments, regulatory enzymes—central components in a host of living processes—are tightly controlled with the tweezers, which can switch reactions on or off depending on their open or closed condition.
"The work has important implications for regulating enzymatic function and may help usher in a new generation of nanoscale diagnostic devices as well as aid in the synthesis of valuable chemicals and smart materials", said Yan.
Results of the new research appear in the current issue of the journal Nature Communications. Minghui Liu, a researcher in Biodesign's Center for Single Molecule Biophysics and the Department of Chemistry and Biochemistry at ASU is the paper's lead author. Other authors include Jinglin Fu, Yan Liu, Neal Woodbury from ASU and Christian Hejesen and Kurt Gothelf from Aarhus University, Denmark.
Source-Eurekalert