Mutant form of a metabolic enzyme called IDH1 (isocitrate dehydrogenase 1) disturbs the metabolism and stimulates cell division, thus laying the cornerstone for cancer.
![Typical Mutation in Brain Cancer Cells Stifles Immune Response Typical Mutation in Brain Cancer Cells Stifles Immune Response](https://images.medindia.net/health-images/1200_1000/astrocytomas-brain-tumors.jpg)
Scientists from the German Cancer Research Center and the University Hospitals in Mannheim and Heidelberg have now found that the oncometabolite additionally impairs the body's immune response. Normally, the immune system recognizes mutant IDH1 as foreign. The altered molecule in the tumor should therefore attract immune cells. Based on this finding, scientists already developed a vaccine that sensitizes the immune system for the battle against brain tumors exhibiting the special IDH1 mutation.
However, the opposite is the case, according to Michael Platten, a neurologist who leads a research department at the DKFZ and is director of the Neurology Department of University Medicine Mannheim (UMM). "In the immediate environment of tumors with the specific mutation in IDH1, we find only very small quantities of immune cells, which are additionally impaired in their functioning," Platten said. "This made us curious and we aimed to find out whether and how the 2-HG oncometabolite directly influences the immune system."
The investigators discovered that the tumor cells release 2-HG into their environment. T cells - immune cells of the body with an important role in the fight against cancer cells - take up released 2-HG. This subsequently blocks important signaling pathways in the T cells and the immune cells are re-programmed from an active to an inactive state. "This might explain why the immune system fails to suppress the development of these tumors even though it is essentially capable of fighting tumor cells with the mutant IDH1 molecule," said Lukas Bunse, DKFZ and Heidelberg University Hospital, who is one of the first authors of the publication in Nature Medicine. However, the scientists have also found a method to avoid this blockade. They administered an inhibitor developed by the team led by DKFZ researcher Andreas Deimling to mice with IDH1 mutant tumors. The inhibitor blocks the mutant IDH1 molecule so that no 2-HG forms in the tumor cells. Subsequently, the investigators in fact found larger quantities of active immune cells in the tumors and their immediate environment. In addition, immunotherapy combined with the inhibitor was substantially more effective.
Platten thinks that this finding has potential of learning more about other tumors and their treatment. "We now know several of these oncometabolites in different tumor types," the neuroimmunologist said. "It would be interesting to investigate whether suppression of the immune response might be a higher principle in oncometabolites."
The results obtained by the DKFZ researchers already point in a new direction in the treatment of IDH1 mutant tumors. "In future immunotherapies, we will have to attack from two sides," according to Platten, because it has become clear that it is not enough to prime the body's defense mechanisms to attack the mutant IDH1 molecule. "We must additionally block the target protein using a specific inhibitor in order to prevent the production of 2-HG and the resulting suppression of immune response."
Advertisement