The unique ability of zika virus which can cause birth defects as that of microcephaly is identified, reveals study.

The new study, led by TSRI Associate Professor Hyeryun Choe, was published online ahead of print this week in the journal Proceedings of the National Academy of Sciences.
How Zika virus crosses the placental barrier, while other closely related viruses in the flavivirus family including dengue and West Nile viruses do not, has puzzled researchers since the crisis began some two years ago in Brazil.
Obstacles to reaching the fetal brain are substantial--a virus must move from the mother's blood into fetal circulation, which is separated by placental barrier cells designed to prevent that very occurrence.
The researchers found that human umbilical endothelial cells, derived from four donors in the study, proved far more susceptible to Zika infection than to other viruses, with viral counts as much as a hundred or thousand times higher than West Nile or dengue virus. The new research also suggests that Zika virus learned to exploit something of a secret passage, a cell surface molecule known as AXL, while West Nile and dengue viruses did not.
"Zika uses AXL to efficiently slip past one of the major barrier cell types in the placenta: fetal endothelial cells, which are the gateway to access fetal circulation," said Choe.
Advertisement
Zika is able to take advantage of AXL by binding to an intermediate molecule known as Gas6, which is present in blood and other bodily fluids. Gas6 acts as an active bridge between the virus and AXL by binding AXL on one end and the virus membrane on the other, helping the virus utilize AXL and gain entry to host cells.
Advertisement
"We don't yet understand why Zika virus uses AXL and the others don't," Choe added. "The common belief is that all flaviviruses have similar structures, but our findings suggest that Zika virus may have a different average population structure than others. This has significant scientific and clinical implications."
"Structural studies show that most of the infectious virion membrane is completely covered with viral proteins, which makes it difficult for Gas6 to bind to the Zika virus membrane underneath the protein shell," said TSRI Research Associate Byoung-Shik Shim, the study's other first author. "However, flavivirus particles assume many asymmetric shapes and are in continuous dynamic motion, which likely exposes patches of the virion membrane. Our study suggests that Zika virus exposes enough membrane for Gas6 binding, whereas West Nile and dengue viruses do not."
The researchers also speculated on Zika virus' pathology. AXL is also present in the blood-brain barrier, the eye-blood barrier and the testes--where it maintains integrity of the blood vessels and the functions of the testes. It may be used by Zika virus to infect those cells and may explain Zika virus' ability to infect the fetal brain and eye and to transmit sexually.
Source-Eurekalert