New study states that although AI has revolutionized society, the next significant challenge is to develop Artificial Social Intelligence (ASI).
While artificial intelligence (AI) like Siri and Google Assistant is capable of scheduling meetings, they are limited by a lack of social skills needed to prioritize appointments independently as per researchers in China. They published their review of the current state and call for future directions on March 10 in CAAI Artificial Intelligence Research.
‘Researchers based in China suggest that while artificial intelligence (AI) may be smart enough to schedule meetings, it lacks the necessary social skills to independently prioritize appointments.’
“Artificial intelligence has changed our society and our daily life,” said first author Lifeng Fan, National Key Laboratory of General Artificial Intelligence, Beijing Institute for General Artificial Intelligence (BIGAI). “What is the next important challenge for AI in the future? We argue that Artificial Social Intelligence (ASI) is the next big frontier.” ASI, the researchers said, comprises multiple siloed subfields, including social perception, Theory of Mind — the understanding that others think from their point of view — and social interaction.
By using cognitive science and computational modeling to identify the gap between AI systems and human social intelligence, as well as current issues and future directions, Fan said the field will be better equipped to advance.
Unique Challenges of Artificial Social Intelligence (ASI)
“ASI is distinct and challenging compared to our physical understanding of the work; it is highly context-dependent,” Fan said. “Here, context could be as large as culture and common sense or as little as two friends’ shared experience. This unique challenge prohibits standard algorithms from tackling ASI problems in real-world environments, which are frequently complex, ambiguous, dynamic, stochastic, partially observable, and multi-agent.”As such, Fan said, ASI requires a comprehensive approach, since improving specific components of an ASI system may not always result in improved performance — unlike contemporary AI systems.
Advertisement
“Multidisciplinary research informs and inspires the study of ASI: Studying human social intelligence provides insight into the foundation, curriculum, points of comparison, and benchmarks required to develop ASI with human-like characteristics,” Fan said. “We concentrate on the three most important and inextricably linked aspects of social intelligence: social perception, Theory of Mind, and social interaction because they are grounded in well-established cognitive science theories and are readily available tools for developing computational models in these areas.”
Advertisement
“To accelerate the future progress of ASI, we recommend taking a more holistic approach just as humans do, to utilize different learning methods such as lifelong learning, multi-task learning, one-/few-shot learning, meta-learning, etc.,” Fan said. “We need to define new problems, create new environments and datasets, set up new evaluation protocols, and build new computational models. The ultimate goal is to equip AI with high-level ASI and lift human well-being with the help of Artificial Social Intelligence.”
Source-Eurekalert