Anyone who can spend a couple thousand dollars on a non-industry grade 3-D printer can literally make a plastic cloak overnight that masks small objects under specific wavelengths
Anyone who can spend a couple thousand dollars on a non-industry grade 3-D printer can literally make a plastic cloak overnight that masks small objects under specific wavelengths of light, a Duke University engineer has said. Three-dimensional printing, technically known as stereolithographic fabrication, has become increasingly popular, not only among industry, but for personal use. It involves a moving nozzle guided by a computer program laying down successive thin layers of a material-usually a polymer plastic-until a three-dimensional object is produced.
Yaroslav Urzhumov, assistant research professor in electrical and computer engineering at Duke's Pratt School of Engineering, said that producing a cloak in this fashion is inexpensive and easy.
He and his team made a small one at Duke which looks like a Frisbee disc made out of Swiss cheese. Algorithms determined the location, size and shape of the holes to deflect microwave beams. The fabrication process takes from three to seven hours.
The team's research was supported by the U.S. Army Research Office through a Multidisciplinary University Research Initiative grant.
Just like the 2006 cloak, the newer version deflects microwave beams, but researchers feel confident that in the not-so-distant future, the cloak can work for higher wavelengths, including visible light.
"We believe this approach is a way towards optical cloaking, including visible and infrared. And nanotechnology is available to make these cloaks from transparent polymers or glass. The properties of transparent polymers and glasses are not that different from what we have in our polymer at microwave frequencies," Urzhumov said.
Advertisement
"The design of the cloak eliminates the 'shadow' that would be cast, and suppresses the scattering from the object that would be expected," said Urzhumov.
Advertisement
Urzhumov said that theoretically, the technique could be used to create much larger devices.
The results of his experiments were published online in the journal Optics Letters.
Source-ANI