On his fourth day of interacting with the arm T2 performed the session in this study, whereas the prior three sessions were focused on system development.
On his fourth day of interacting with the arm T2 performed the session in this study, whereas the prior three sessions were focused on system development. He later described his control of the arm, using his eyes to indicate each letter: "I justimagined moving my own arm and the [DEKA] arm moved where I wanted it to go." The study used two advanced robotic arms: the DLR Light-Weight Robot III with DLR five-fingered hand and the DEKA Arm System. The DLR LWR-III, which is designed to assist in recreating actions like the human arm and hand and to interact with human users, could be valuable as an assistive robotic device for people with various disabilities. Patrick van der Smagt, head of bionics and assistive robotics at DLR, director of biomimetic robotics and machine learning labs at DLR and the Technische Universität München, and a co-senior author on the paper said: "This is what we were hoping for with this arm. We wanted to create an arm that could be used intuitively by varying forms of control. The arm is already in use by numerous research labs around the world who use its unique interaction and safety capabilities. This is a compelling demonstration of the potential utility of the arm by a person with paralysis."
DEKA Research and Development developed the DEKA Arm System for amputees, through funding from the United States Defense Advanced Research Projects Agency (DARPA). Dean Kamen, founder of DEKA said, "One of our dreams for the Luke Arm [as the DEKA Arm System is known informally] since its inception has been to provide a limb that could be operated not only by external sensors, but also by more directly thought-driven control. We're pleased about these results and for the continued research being done by the group at the VA, Brown and MGH." The research is aimed at learning how the DEKA arm might be controlled directly from the brain, potentially allowing amputees to more naturally control this prosthetic limb.
Over the past two years, VA has been conducting an optimization study of the DEKA prosthetic arm at several sites, with the cooperation of Veterans and active duty service members who have lost an arm. Feedback from the study is helping DEKA engineers to refine the artificial arm's design and function. "Brain-computer interfaces, such as BrainGate, have the potential to provide an unprecedented level of functional control over prosthetic arms of the future," said Joel Kupersmith, MD, VA Chief Research and Development Officer. "This innovation is an example of federal collaboration at its finest."
Story Landis, director of the National Institute of Neurological Disorders and Stroke, which funded the work in part, noted: "This technology was made possible by decades of investment and research into how the brain controls movement. It's been thrilling to see the technology evolve from studies of basic neurophysiology and move into clinical trials, where it is showing significant promise for people with brain injuries and disorders."
Source-Eurekalert