Vaccines can turn ineffective if the vaccinated patient is exposed to high pathogen doses, explores a new study. Measles vaccine is being subjected to this hypothesis in this study.
The efficiency of measles vaccine can become less, if the vaccinated patient is exposed to high pathogen environment or comes in contact with somebody who is really very sick with that virus, finds a new study. The results of this study are published in the Scientific reports Journal. "For many infectious diseases, we rely on herd immunity to prevent outbreaks of vaccine-preventable infections. Herd immunity is the protection of the 'herd,' our population, by preventing infections in the vast majority people," said Kate Langwig, an infectious disease ecologist at Virginia Tech. "We can calculate the percentage of the population that needs to be vaccinated to prevent diseases from spreading and maintain herd immunity. For some pathogens, like measles, the number that needs to vaccinated is very high because the measles virus spreads so easily."
‘Langwig and her lab found that vaccines can become less effective at higher pathogen doses and when individuals in the population are more susceptible.’
Langwig, an assistant professor in the Department of Biological Sciences in the College of Science at Virginia Tech, is researching ways in which vaccine efficacy can be improved.The measles vaccine has been shown to have 97 percent efficacy, but "understanding the circumstances that contribute to vaccine ineffectiveness can help to better protect populations," Langwig said.
Langwig and her lab ran mathematical modeling simulations to determine if vaccine efficacy might be lower when individuals are exposed to high pathogen doses, and when individuals vary in their susceptibility.
For example, if you have been vaccinated against the measles, but someone sneezes very close to your face, or you're caring for a sick kid who is sneezing, coughing, etc., are you more likely to get sick? In addition, if you're run down (maybe from chasing that kid the week earlier), are you more likely to get infected even if you've been vaccinated?
Langwig and her lab found in their simulations that vaccines are predicted to be less effective at higher pathogen doses and when individuals in the population have similar susceptibility.
Advertisement
Langwig and her lab were interested in validating their simulations with some real-world data, so they did a systematic literature review with help from Virginia Tech undergraduate researchers to determine whether there were examples of diseases where vaccines efficacy is reduced at high doses.
Advertisement
They did find that some vaccines did offer complete protection regardless of pathogen dose in several model organisms, suggesting that not all vaccines are less effective when individuals are exposed to high doses.
Extrapolation to human systems should be done with care, but this research helps increase the understanding of host susceptibility, pathogen dose, and vaccine efficacy.
"One thing that surprised us is that many scientists are vaguely aware that vaccines might fail at high pathogen doses, but there were a very small number of studies that had ever examined this," said Langwig.
Langwig is currently collaborating with another lab to test vaccine efficacy and different pathogen doses in a species of rainbow trout. They will continue to design mathematical models to test predictions in real-world situations to determine how populations can be further protected.
Source-Eurekalert