For patients suffering from neurodegenerative diseases such as Alzheimer's or Parkinson's, gene transfer could be a glimmer of hope.
A gene determines a particular trait by encoding for a specific polypeptide in a given organism. Because the genetic code is (almost) universal, an organism can potentially express a new trait if the appropriate gene is introduced into its genome. For Alzheimer's and Parkinson's patients, gene transfer is seen as a hopeful therapy. The approach involves using harmless laboratory-produced viruses to introduce important genes into the brain cells. In a study on mice, a team of researchers from Vetmeduni Vienna for the first time investigated how far these viruses spread in the brain and which cells they infect. Some of the artificial viruses travelled from the injection site in the brain as far as the olfactory bulb or the cerebellum and infected not only neurons but also other cells.
‘Genetic transfer is the mechanism by which DNA is transferred from a donar to a recipient. Once donar DNA is inside the recipient, crossing over can occur. The result is a recombinant cell that has a genome different from either the donar or the recipient.’
The results, which were published in the journal Histochemistry and Cell Biology, could help to improve the selection of suitable viral "gene transporters" for custom therapies using gene transfer. Purposefully infecting brain cells with viruses may seem somewhat odd. But for patients suffering from neurodegenerative diseases such as Alzheimer's or Parkinson's, this type of therapy could be a glimmer of hope. The viruses used in this approach do not trigger any disease themselves. They serve as harmless transporters for genes specifically intended to treat these disorders. The therapy, called gene transfer, uses the ability of viruses to insert their genes into the genome of a host cell. This method could therefore be used to purposefully introduce helpful genetic information into neurons. Viral vectors don't stay put
Viruses suitable for gene transfer are injected into the brain. Previously, however, there had been no studies of how far the viral transporters can spread from the injection site. Earlier studies had usually only investigated the immediate area around the injection canal. A new study with mice has now shown for the first time that some of the tested viruses can travel long distances into different areas of the brain. "In our study, we injected the viral vectors into key areas of the cerebrum responsible, among other things, for the coordinationof body movement ," explains Kirsti Witter from the Institute for Anatomy, Histology and Embryology at Vetmeduni Vienna. From there, some of the viruses spread into distant areas such as the cerebellum or the olfactory bulb.
"This information is important because, depending on the type of neurodegenerative disease, it may be desirable to have as broad a distribution of the virus as possible or to infect a specific, strictly delimited area," says first author Juraj Hlavaty. "This study also shows that all tested viruses can infect the neurons and the surrounding glial cells as expected. Depending on the type of virus, however, there were differences in the number and ratio of the infected cell types."
Inflammation could influence which brain cells are infected
Advertisement
Artificial copies of viruses as hopeful therapy
Advertisement
Source-Eurekalert