How is it that we are able to focus clearly on something while other things blur in the background. Scientists here in this study will help you understand.
Visual stimuli tend to compete with each other for the brain to focus on a vision, finds a new study. A neural network that reciprocally connects the optic tectum to the isthmi forms a simple neural mechanism for stimulus competition. The findings of this study are published in the journal of Proceedings of the National Academy of Sciences.
‘Individual nerve cells of the visual midbrain have been found to establish parallel connections to three areas of the brain, these areas each create their own feedback loops with the visual midbrain, and this feedback reinforces the most salient visual stimuli while suppressing others at the same time.’
We are almost constantly surrounded by a variety of visual objects, all of which could, theoretically, be important for us. But only a very small area on our retinas, the fovea in the macula lutea, has high visual acuity; a large portion of our field of vision has only a low resolution. Therefore, our gaze must be directed toward a specific target in order to precisely identify the object.Unconsciously deciding what we look at
But what functionality decides where we direct our vision when we are not looking for anything in particular and do not know where look at in the first place? Researchers from the Department of Zoology at the Weihenstephan School of Life Sciences of the Technical University of Munich, working in cooperation with Chilean and American colleagues, asked themselves this very question.
"The decision where to look is made unconsciously; the objective of our study was to investigate this selection process in detail," reports Prof. Harald Luksch from the Department of Zoology at the TUM, who also heads the Bionics Center at the TUM. Gaze control involves an evaluation of the field of vision from which a selection is made as to where the fovea will be directed next. "A neural network called the isthmic system performs the selection process," explains zoologist Luksch. Because this network is well characterized anatomically in birds, the study was carried out on chickens and, in part, on isolated brain tissue (in vitro).
Some stimuli are suppressed, others reinforced
Advertisement
This feedback reinforces the most salient visual stimuli while suppressing others at the same time. In this manner, an unconscious selection is made. "What surprised us was that the various feedback loops, reinforcing and inhibitory, are triggered by one and the same cell," remarks Luksch. "In the past, scientists assumed that this was performed by various cells." Therefore, a single cell controls entirely different processes, although with different time courses.
Advertisement
Because the selection process which has now been researched can be represented as a technical circuit diagram, these intelligently evolved mechanisms in the animal world could also be implemented in robots. It is necessary for robots to react in a manner similar to that of organisms, particularly for interactivity with humans. Therefore, Harald Luksch expects these findings to be important for bionic transfers to technical systems in the future.
Source-Eurekalert